Networks Business Online Việt Nam & International VH2

Trong không gian oxyz phương trình mặt phẳng oxy là

Đăng ngày 26 October, 2022 bởi admin

18/06/2021 152,223

A. z = 0

Đáp án chính xác

Đáp án A
Mặt phẳng (Oxy) đi qua O, véc-tơ pháp tuyến  có phương trình 1(z – 0) = 0 <=> z = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Trong không gian với hệ tọa độ Oxyz, véc-tơ nào dưới đây là một véc-tơ pháp tuyến của mặt phẳng ( Oxy ) ? Xem đáp án » 18/06/2021 5,781

Trong không gian với hệ toạ độ Oxyz, cho 3 điểm M ( 3 ; 0 ; 0 ), N ( 0 ; – 2 ; 0 ), P ( 0 ; 0 ; 1 ). Mặt phẳng ( MNP ) có phương trình : Xem đáp án » 18/06/2021 5,134

Trong không gian Oxyz, cho mặt phẳng ( P ) : 3 x + 2 y – z + 1 = 0. Điểm nào dưới đây thuộc ( P ) ? Xem đáp án » 18/06/2021 4,368

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A ( – 2 ; 0 ; 0 ), B ( 0 ; 3 ; 0 ) và C ( 0 ; 0 ; 2 ). Phương trình nào dưới đây là phương trình của mặt phẳng ( ABC ) ? Xem đáp án » 18/06/2021 4,022

Trong không gian Oxyz, tìm phương trình mặt phẳng (α) cắt ba trục Ox, Oy, Oz lần lượt tại ba điểm A(-3;0;0), B(0;4;0), C(0;0;-2).

Xem đáp án » 18/06/2021 2,802

Trong không gian với hệ tọa độ Oxyz, mặt phẳng ( P ) đi qua điểm G ( 1 ; 1 ; 1 ) và vuông góc với đường thẳng OG có phương trình là : Xem đáp án » 18/06/2021 2,773

Trong không gian với hệ tọa độ Oxyz, mặt phẳng ( P ) : 2 x + 3 y + 4 z – 12 = 0 cắt trục Oy tại điểm có tọa độ là : Xem đáp án » 18/06/2021 2,511

Trong không gian với hệ tọa độ Oxy, cho hai điểm A ( 2 ; 3 ; 1 ), B ( 0 ; 1 ; 2 ). Phương trình mặt phẳng ( P ) đi qua A và vuông góc với đường thẳng AB là : Xem đáp án » 18/06/2021 1,876

Trong không gian Oxyz, phương trình mặt phẳng qua ba điểm A ( – 3 ; 0 ; 0 ), B ( 0 ; – 2 ; 0 ), C ( 0 ; 0 ; 1 ) được viết dưới dạng ax + by – 6 z + c = 0. Giá trị của T = a + b-c là : Xem đáp án » 18/06/2021 1,432

Trong không gian Oxyz, cho mặt phẳng ( P ) có phương trình – x + 2 y + 3 z – 4 = 0. Mặt phẳng ( P ) có một véc-tơ pháp tuyến là : Xem đáp án » 18/06/2021 1,134

Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình của mặt phẳng Oxz ? Xem đáp án » 18/06/2021 1,121

Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) đi qua gốc toạ độ và nhận Trong không gian oxyz phương trình mặt phẳng oxy là

Xem đáp án » 18/06/2021 938

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x – y – 2 z – 3 = 0. Điểm nào dưới đây thuộc mặt phẳng ( P ) ? Xem đáp án » 18/06/2021 760

Trong không gian với hệ toạ độ Oxyz, cho ba điểm A ( 2 ; – 1 ; 1 ), B ( 1 ; 0 ; 4 ) và C ( 0 ; – 2 ; – 1 ). Phương trình mặt phẳng qua A và vuông góc với đường thẳng BC là : Xem đáp án » 18/06/2021 749

Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng qua A(1;2;-1) có một véc-tơ pháp tuyến Trong không gian oxyz phương trình mặt phẳng oxy là = (2;0;0) có phương trình là:

Xem đáp án » 18/06/2021 480

Viết phương trình mặt phẳng trong không gian Oxyz hay viết phương trình mặt phẳng đi qua 3 điểm là những dạng toán quan trọng trong chương trình toán học THPT. Trong nội dung bài viết dưới đây, lingocard.vn sẽ giúp bạn tổng hợp kiến thức về chủ đề viết phương trình mặt phẳng trong không gian, cùng tìm hiểu nhé!

Mục lục

1 Phương trình mặt phẳng trong không gian3 Các dạng bài viết phương trình mặt phẳng trong không gian Oxyz

Phương trình mặt phẳng trong không gian

Phương trình tổng quát của mặt phẳng trong không gian Oxyz

Phương trình tổng quát của mặt phẳng ( P ) trong không gian Oxyz có dạng :
Ax + By + Cz + D = 0 với ( A ^ { 2 } + B ^ { 2 } + C ^ { 2 } > 0 ) Muốn viết phương trình mặt phẳng trong không gian ta cần xác lập được 2 dữ kiện :

Vị trí tương đối của hai mặt phẳng

Trong không gian oxyz phương trình mặt phẳng oxy là
Cho 2 mặt phẳng ( P ) : Ax + By + Cz + D = 0 và ( Q. ) : A’x + B’y + C’z + D ’ = 0 thì :
Hai mặt phẳng cắt nhau khi và chỉ khi : ( frac { A } { A ’ } eq frac { B } { B ’ }eq frac { C } { C ’ } )

Hai mặt phẳng song song khi và chỉ khi: (frac{A}{A’} = frac{B}{B’} = frac{C}{C’}
eq frac{D}{D’})

Hai mặt phẳng trùng nhau khi và chỉ khi : ( frac { A } { A ’ } = frac { B } { B ’ } = frac { C } { C ’ } = frac { D } { D ’ } )
Hai mặt phẳng vuông góc khi và chỉ khi : ( AA ’ + BB ’ + CC ’ = 0 )

Khoảng cách từ một điểm tới một mặt phẳng

Cho điểm M ( a, b, c ) và mặt phẳng ( P ) : Ax + By + Cz + D = 0 .
Đang xem : Phương trình mặt phẳng oxyz
Khi đó khoảng cách từ điểm M tới ( P ) được xác lập như sau :

(d(A, (P)) = frac{left | Aa + Bb + Cc + D
ight |}{sqrt{A^{2} + B^{2} + C^{2}}})

Tổng kết lý thuyết viết phương trình mặt phẳng trong không gian

Trong không gian oxyz phương trình mặt phẳng oxy là

Các dạng bài viết phương trình mặt phẳng trong không gian Oxyz

Dạng 1: Viết phương trình mặt phẳng (P) biết 1 điểm thuộc mặt phẳng và vector pháp tuyến

Vì mặt phẳng ( P ) đi qua điểm ( M ( x_ { 0 } ; y_ { 0 } ; z_ { 0 } ) )
Mặt phẳng ( P ) có vector pháp tuyến ( vec { n } ( A, B, C ) )
Khi đó phương trình mặt phẳng ( P ) : ( A ( x-x_ { 0 } ) + B ( y-y_ { 0 } ) + C ( z-z_ { 0 } ) = 0 )
Trong không gian oxyz phương trình mặt phẳng oxy là

Ví dụ 1: Viết phương trình mặt phẳng (P) đi qua M (3;1;1) và có VTPT (vec{n} = (1; -1; 2))

Cách giải:

Thay tọa độ điểm M và VTPP (vec{n}) ta có:

( P ) : ( ( 1 ) ( x – 3 ) + ( – 1 ) ( y – 1 ) + 2 ( z – 1 ) = 0 Leftrightarrow x – y + 2 z – 4 = 0 )

Dạng 2: Viết phương trình mặt phẳng (P) đi qua 3 điểm không thẳng hàng

Vì mặt phẳng ( P ) đi qua 3 điểm A, B, C. Nên mặt phẳng ( P ) có 1 cặp vector chỉ phương là ( vec { AB } ; vec { AC } )
Khi đó ta gọi ( vec { n } ) là một vector pháp tuyến của ( P ), thì ( vec { n } ) sẽ bằng tích có hướng của hai vector ( vec { AB } ) và ( vec { AC } ). Tức là ( vec { n } = left < vec { AB } ; vec { AC } ight > )
Trong không gian oxyz phương trình mặt phẳng oxy là

Ví dụ 2: Viết phương trình mặt phẳng (P) đi qua 3 điểm không thẳng hàng A(1,1,3); B(-1,2,3); C(-1;1;2)

Cách giải:

Ta có : ( vec { AB } = ( – 2 ; 1 ; 0 ) ; vec { AC } = ( – 2,0, – 1 ) Rightarrow left < vec { AB }, vec { AC } ight > = ( – 1, – 2,2 ) )
Suy ra mặt phẳng ( P ) có VTPT là ( vec { n } = left < vec { AB }, vec { AC } ight > = ( – 1, – 2,2 ) ) và đi qua điểm A ( 1,1,3 ) nên có phương trình :
( ( – 1 ) ( x – 1 ) – 2 ( y – 1 ) + 2 ( z – 3 ) = 0L eftrightarrow – x – 2 y + 2 z – 3 = 0 )

Dạng 3: Viết phương trình mặt phẳng đi qua 1 điểm và song song với 1 mặt phẳng khác

Mặt phẳng ( P ) đi qua điểm ( M ( x_ { 0 } ; y_ { 0 } ; z_ { 0 } ) ) và song song với mặt phẳng ( Q. ) : Ax + By + Cz + m = 0
Vì M thuộc mp ( P ) nên thế tọa độ M và pt ( P ) ta tìm được M .
Khi đó mặt phẳng ( P ) sẽ có phương trình là :
( A ( x – x_ { 0 } ) + B ( y – y_ { 0 } ) + C ( z – z_ { 0 } ) = 0 )

Chú ý: Hai mặt phẳng song song có cùng vector pháp tuyến.

Xem thêm : Bọn Nhân Văn Giai Phẩm Trước Toà Án Dư Luận Pdf, Thú Chơi Sách

Ví dụ 3: Viết phương trình mặt phẳng (P) đi qua điểm M (1;-2;3) và song song với mặt phẳng (Q): 2x – 3y + z + 5 = 0

Cách giải:

Vì ( P ) song song với ( Q. ) nên VTPT của ( P ) cùng phương với VTPT của ( Q. ) .
Suy ra ( P ) có dạng : 2 x – 3 y + z + m = 0
Mà ( P ) đi qua M nên thay tọa độ M ( 1 ; – 2 ; 3 ) ta có :
( 2.1 + ( – 3 ). ( – 2 ) + 3 + m = 0 Leftrightarrow m = – 11 )
Vậy phương trình ( P ) : 2 x – 3 y + z – 11 = 0

Dạng 4: Viết phương trình mặt phẳng đi qua 1 đường thẳng và 1 điểm cho trước

Mặt phẳng ( P ) đi qua điểm ( M ( x_ { 0 } ; y_ { 0 } ; z_ { 0 } ) ) và đường thẳng d .
Xem thêm : Đồ Án Xử Lý Khí Thải Lò Đốt Rác Công Nghiệp, Đồ Án Xử Lý Khí Thải
Lấy điểm A thuộc đường thẳng d ta tìm được vector ( vec { MA } ) và VTCP ( vec { u } ), từ đó tìm được VTPT ( 2.1 vec { n } = left < vec { MA } ; vec { u } ight > ) .
Thay tọa độ ta tìm được phương trình mặt phẳng ( P )

Ví dụ 4: Viết phương trình mặt phẳng (P) đi qua điểm M (3;1;0) và đường thẳng d có phương trình: (frac{x – 3}{-2} = frac{y + 1}{1} = frac{z + 1}{1})

Cách giải:

Lấy điểm A ( 3 ; – 1 ; – 1 ) thuộc đường thẳng d .
Suy ra ( vec { MA } ( 0 ; – 2 ; – 1 ) ) và VTCP ( vec { u } ( – 2 ; 1 ; 1 ) )
Mặt phẳng ( P ) chứa d và đi qua M nên ta có VTPT : ( vec { n } = left < vec { MA } ; vec { u } ight > = ( – 1 ; 2 ; 4 ) )

Vậy phương trình mặt phẳng (P): (-1(x – 3) + 2(y – 1) – 4z = 0Leftrightarrow -x + 2y – 4z + 1 = 0)

Xem thêm bài viết thuộc chuyên mục: Phương trình

Source: https://vh2.com.vn
Category : Trái Đất