Đồ họa của Tech Insider cho thấy những lục địa sẽ hợp nhất thành một dải đất duy nhất trong vòng 250 triệu năm tới . Bạn đang đọc: Các...
Tổng Hợp Công Thức Toán Hình 12 Đầy Đủ Dễ Nhớ Nhất -VUIHOC
Tác giả Cô Hiền Trần
75,629
Công thức toán hình 12 có rất nhiều những dạng bài, đôi lúc sẽ khiến tất cả chúng ta dễ nhầm lẫn. Đừng lo ! Bài viết san sẻ đến cho những bạn hàng loạt công thức toán 12 hình học, không riêng gì giúp thuận tiện tổng hợp kiến thức và kỹ năng, mà còn mang lại hàng loạt kiến thức và kỹ năng toán hình 12 rất đầy đủ đến mỗi học viên .
1. Tổng hợp công thức toán hình 12 khối đa diện
Đến với chương tiên phong – khối đa diện, bạn được học về hình chóp tam giác, chóp tứ giác, hình hộp, … Chúng ta hoàn toàn có thể hiểu rằng khối đa diện là phần không gian được số lượng giới hạn bởi hình đa diện, gồm có cả hình đa diện đó. Ta sẽ có những công thức như sau :
1.1. Công thức toán hình 12 khối đa diện
Thể tích khối chóp vận dụng cho chóp tam giác và chóp tứ giác :
Công thức tính thể tích hình chóp được hiểu là một phần ba diện tích quy hoạnh dưới mặt đáy nhân với chiều cao. Thể tích khối chóp tứ giác đều và tam giác đều có cùng chung công thức .
Ta có thể tích khối chóp :
Sđáy. h
Trong đó :
- S đáy : Diện tích dưới mặt đáy
- h : Độ dài chiều cao
Thể tích khối chóp S.ABCD là :
1.2. Công thức toán hình 12 khối lăng trụ
Hình lăng trụ có vài đặc thù giống nhau, đó là :
- Nằm trên 2 mặt phẳng song song với nhau và có hai đáy giống nhau .
- Cạnh bên đôi một bằng nhau và song song với nhau, những mặt bên là hình bình hành .
Thể tích khối lăng trụ được tính bằng công thức như sau :
V = S.h
Trong đó :
- S là diện tích quy hoạnh đáy .
- h là chiều cao .
Lưu ý : Hình lăng trụ đứng có chiều cao chính là cạnh bên .
Ngoài ra, những em hoàn toàn có thể tìm hiểu thêm thêm công thức tính thể tích khối lăng trụ tam giác đều để giải những bài tập về hình lăng trụ .
1.3. Thể tích hình hộp chữ nhật lớp 12
Hình hộp chữ nhật có những cạnh đáy lần lượt là a, b và chiều cao c, khi đó thể tích hình hộp chữ nhật là V = a. b. c ( a, b, c có cùng đơn vị chức năng ) .
Hình lập phương là dạng đặc biệt quan trọng của hình hộp chữ nhật có a = b = c. Do vậy thể tích hình lập phương được tính theo công thức : V = a3
1.4. Công thức toán hình 12 khối chóp cụt
Hình chóp cụt được định nghĩa là một phần của khối đa diện nằm giữa dưới mặt đáy và thiết diện cắt bởi đáy của hình chóp và một mặt phẳng song song với đáy .
a ) Diện tích xung quanh hình chóp cụt
Diện tích xung quanh của hình chóp cụt là diện tích quy hoạnh những mặt xung quanh, phần bao quanh hình chóp cụt không gồm có diện tích quy hoạnh hai đáy .
Diện tích hình chóp cụt đều được tính bằng công thức dưới đây :
. Smặt bên
Trong đó :
- Sxq : diện tích quy hoạnh xung quanh .
- n : số lượng mặt bên .
- a, b : chiều dài cạnh của 2 đáy trên và dưới của hình chóp cụt .
- h : chiều cao mặt bên .
Công thức tính diện tích quy hoạnh xung quanh của hình chóp cụt là tính diện tích quy hoạnh từng mặt bên của hình chóp cụt theo công thức tính diện tích quy hoạnh hình thang thông thường, sau đó tính tổng diện tích quy hoạnh của tổng thể những hình cấu thành hình chóp cụt .
b ) Công thức tính diện tích quy hoạnh toàn phần
Diện tích toàn phần của hình chóp cụt được tính bằng tổng diện tích quy hoạnh 2 dưới mặt đáy và diện tích quy hoạnh xung quanh của hình chóp cụt đó .
Công thức :
Stp = Sxq + Sđáy lớn + Sđáy nhỏ
Trong đó :
- Stp : Diện tích toàn phần
- Sxq : Diện tích xung quanh
- Sđáy lớn : Diện tích đáy lớn
- Sđáy nhỏ : Diện tích đáy nhỏ
c ) Thể tích hình chóp cụt được tính bằng công thức
Công thức :
Trong đó :
- V : thể tích hình chóp cụt .
- S, S ’ lần lượt là diện tích quy hoạnh dưới mặt đáy lớn và đáy nhỏ của hình chóp cụt .
- h : độ cao ( khoảng cách giữa 2 mặt dưới lớn và đáy nhỏ )
2. Công thức toán hình 12 hình nón
Có thể hiểu đơn thuần, hình học có không gian ba chiều mà bề mặt phẳng và mặt phẳng cong hướng lên phía trên là hình nón. Đầu nhọn của hình nón được gọi là đỉnh và bề mặt phẳng được gọi là đáy. Ta hoàn toàn có thể thuận tiện phát hiện những đồ vật có hình nón như chiếc nón lá, mũ sinh nhật, …
a) Diện tích xung quanh hình nón được tính bằng tích của số Pi (π) nhân với bán kính đáy hình nón (r) rồi nhân với đường sinh hình nón (l). Ta có công thức:
Trong đó :
- Sxq : là diện tích quy hoạnh xung quanh .
- π : là hằng số
- r : là nửa đường kính mặt dưới hình nón
- l : đường sinh của hình nón .
b ) Diện tích toàn phần hình nón được tính bằng diện tích quy hoạnh xung quanh hình nón cộng với diện tích quy hoạnh dưới mặt đáy của hình nón .
Vì diện tích của mặt đáy là hình tròn nên ta áp dụng công thức tính diện tích hình tròn:
c) Để tính thể tích khối nón, ta áp dụng công thức sau:
Trong đó :
- V : Ký hiệu thể tích hình nón
- π : = 3,14
- r : Bán kính hình tròn trụ đáy .
- h : là đường cao tính từ đỉnh hình nón xuống tâm đường tròn
d ) Tổng hợp một vài công thức mặt nón :
- Đường cao : h = SO ( hay còn gọi là trục của hình nón )
- Bán kính đáy : r = OA = OB = OM
-
Đường sinh: l=SA=SB=SM
- Góc ở đỉnh : ASB
- Thiết diện qua trục SAB cân tại S
- Góc giữa dưới mặt đáy và đường sinh : SAO = SBO = SMO
-
Chu vi đáy:
-
Diện tích đáy: Sđáy
3. Công thức toán hình lớp 12 hình tròn trụ
Hình được số lượng giới hạn bởi hai đường tròn có mặt trụ và đường kính bằng nhau được gọi là hình tròn trụ. Trong công thức toán hình lớp 12, hình tròn trụ cũng được tìm kiếm khá nhiều, vận dụng cho cả dạng bài phức tạp và đơn thuần .
a) Công thức tính thể tích khối trụ: S đáy
Trong đó ta có :
- r : nửa đường kính hình tròn trụ
- h : chiều cao hình tròn trụ
- 3.143.14
b) Diện tích xung quanh của khối trụ có công thức như sau:
Trong đó :
- r : nửa đường kính hình tròn trụ
- h : chiều cao nối từ đáy cho tới đỉnh của hình tròn trụ
c ) Công thức tính diện tích quy hoạnh toàn phần
Sđáy =
d ) Một vài công thức hình tròn trụ khác
-
Diện tích đáy:
-
Chu vi đáy:
>> Xem thêm: Công thức tính thể tích khối trụ tròn xoay và bài tập
4. Những công thức toán hình lớp 12 : Mặt cầu
Theo những gì tất cả chúng ta đã được học, mặt cầu tâm O, nửa đường kính r được tạo nên bởi tập hợp điểm M trong không gian và cách điểm O khoảng chừng cố định và thắt chặt không đổi bằng r ( r > 0 ) .
Cho mặt cầu S ( I, R ), ta có :
-
Công thức thể tích khối cầu:
Trong đó : r : nửa đường kính hình cầu
-
Diện tích mặt cầu:
5. Công thức toán hình 12 tọa độ trong không gian
5.1. Hệ tọa độ oxyz
Trong không gian với hệ tọa độ oxyz, cho ba trục Ox, Oy, Oz vuông góc từng đôi một và phân biệt nhau, có gốc tọa độ O, trục tung Oy, trục hoành Ox, trục cao Oz và các mặt tọa độ Oxy, Oyz, Ozx. Các là các vectơ đơn vị.
+ 1
Chú ý:
5.2. Vectơ
>> Xem thêm: Lý thuyết tổng và hiệu quả hai vec tơ & bài tập
5.3. Tích có hướng của 2 vectơ
Cho 2 vectơ =(a;b;c) và =(a’;b’;c) ta định nghĩa tích có hướng của 2 vectơ đó là 1 vectơ, kí hiệu hay có tọa độ:
- Tính chất có hướng của 2 vectơ
a. vuông góc với và
b.
c. cùng phương
>> Xem thêm: Tích của vecto với một số: Lý thuyết và bài tập
5.4. Tọa độ điểm
5.5. Phương trình mặt cầu, đường thẳng, mặt phẳng
a) Phương trình đường thẳng
Các dạng phương trình đường thẳng trong không gian gồm có :
– Vectơ chỉ phương của đường thẳng :
Định nghĩa: Cho đường thẳng d. Nếu vectơ và có giá song song hoặc trùng với đường thẳng d thì vecto a được gọi là vectơ chỉ phương của đường thẳng d. Kí hiệu:
Chú ý :
- cũng là VTCP của da là VTCP của d thìcũng là VTCP của d
- Nếu d đi qua hai điểm A, B thì AB là một VTCP của d
- = = (1;0;0)Trục Ox có vecto chỉ phương = ( 1 ; 0 ; 0 )
- = = (0;1;0)Trục Oy có vecto chỉ phương = ( 0 ; 1 ; 0 )
- = = (0;0;1)Trục Oz có vecto chỉ phương = ( 0 ; 0 ; 1 )
– Phương trình tham số của đường thẳng :
Phương trình tham số của đường thẳng () đi qua điểm và nhận làm VTCP là:
{ x = x0 + a1t
{ y = y0 + a2t
{ z = z0 + a3t
– Phương trình chính tắc của đường thẳng :
Phương trình chính tắc của đường thẳng () đi qua điểm và nhận
() :
b) Phương trình mặt cầu
Theo định nghĩa, tất cả chúng ta hoàn toàn có thể biết được, phương trình mặt cầu là khi cho điểm I cố định và thắt chặt và số thực dương R. Gọi tập hợp những điểm M trong không gian cách I một khoảng chừng R được gọi là mặt cầu tâm I, nửa đường kính R.
Lúc này ta có hai dạng phương trình :
- Dạng 1 : Phương trình mặt cầu ( S ), có tâm I ( a, b, c ), nửa đường kính R
- Dạng 2 : Phương trình có dạng :
Với điều kiện là:
c) Phương trình mặt phẳng
– Phương trình mặt phẳng a :
- Phương trình tổng quát :
- Phương trình đoạn chắn :
( a qua A ( a ; 0 ; 0 ) ; B ( 0 ; b ; 0 ) ; C ( 0 ; 0 ; c ) )
– Góc giữa 2 mặt phẳng :
a : Ax + By + Cz + D = 0
b : A’x + B’y + C’z + D ’ = 0
– Khoảng cách từ điểm M0(x0 ; y0; z0) đến mặt phẳng a:
USD d ( M, ( a ) ) = \ frac { Ax_ { 0 } + By_ { 0 } + Cz_ { 0 } + D } { \ sqrt { A ^ { 2 } + B ^ { x } + C ^ { 2 ^ } } } } $
Hy vọng những công thức toán hình 12 mà VUIHOC san sẻ trên đây phần nào giúp những bạn ghi nhớ hiệu suất cao và và hạn chế sai sót trong quy trình làm bài. Nếu mong ước hiểu sâu về bài giảng cho môn học, những bạn học viên hãy ĐK tham gia khóa học dành cho học viên lớp 12 ôn thi trung học phổ thông trên Vuihoc. vn nhé ! Chúc những bạn ôn thi thật hiệu suất cao .
>> Xem thêm:
Source: https://vh2.com.vn
Category : Trái Đất