Networks Business Online Việt Nam & International VH2

BÀI TẬP HÌNH HỌC KHÔNG GIAN LỚP 11 CHƯƠNG 2 CÓ LÒI GIẢI HAY

Đăng ngày 25 October, 2022 bởi admin

Ngày đăng: 18/06/2015, 18:47

Bài tập Hình Học Không Gian – Lớp 11 BÀI TẬP HÌNH KHÔNG GIAN 11 Dạng 1 : Xác định giao tuyến của hai mặt phẳng ( α ) và ( β ) Phương pháp : • Tìm hai điểm chung phân biệt của hai mặt phẳng ( α ) và ( β ) • Đường thẳng đi qua hai điểm chung ấy là giao tuyến cần tìm Chú ý : Để tìm chung của ( α ) và ( β ) thường tìm 2 đường thẳng đồng phẳng lần lượt nằm trong hai mp giao điểm nếu có của hai đường thẳng này là điểm chung của hai mặt phẳng Bài tập : 1. Trong mặt phẳng ( α ) cho tứ giác ABCD có các cặp cạnh đối không song song và điểm )( α ∉S. a. Xác định giao tuyến của )(SAC và (SBD) b. Xác định giao tuyến của (SAB) và (SCD) c. Xác định giao tuyến của (SAD) và (SBC) Giải a. Xác định giao tuyến của (SAC) và (SBD) Ta có : S là điểm chung của (SAC) và (SBD) Trong ( α ), gọi O = AC ∩ BD • O ∈ AC mà AC ⊂ (SAC) ⇒ O ∈ (SAC) • O ∈ BD mà BD ⊂ (SBD) ⇒ O ∈ (SBD) ⇒ O là điểm chung của (SAC) và (SBD) Vậy : SO là giao tuyến của (SAC) và (SBD) b. Xác định giao tuyến của (SAB) và (SCD) Ta có: S là điểm chung của (SAC) và (SBD) Trong ( α ), AB không song song với CD Gọi I = AB ∩ CD • I ∈ AB mà AB ⊂ (SAB) ⇒ I ∈ (SAB) • I ∈ CD mà CD ⊂ (SCD) ⇒ I ∈ (SCD) ⇒ I là điểm chung của (SAB) và (SCD) Vậy : SI là giao tuyến của (SAB) và (SCD) c. Tương tự câu a, b 2. Cho bốn điểm A,B,C,D không cùng thuộc một mặt phẳng. Trên các đoạn thẳng AB, AC, BD lần lượt lấy các điểm M, N, P sao cho MN không song song với BC. Tìm giao tuyến của ( BCD) và ( MNP) Giải • P ∈ BD mà BD ⊂ ( BCD) ⇒ P ∈ ( BCD) • P ∈ ( MNP) ⇒ P là điểm chung của ( BCD) và ( MNP) Trong mp (ABC), gọi E = MN ∩ BC • E ∈ BC mà BC ⊂ ( BCD) ⇒ E ∈ ( BCD) • E ∈ MN mà MN ⊂ ( MNP) ⇒ E ∈ ( MNP) ⇒ E là điểm chung của ( BCD) và ( MNP) Vậy : PE là giao tuyến của ( BCD) và ( MNP) 3. Cho tam giác ABC và một điểm S không thuộc mp (ABC ), một điểm I thuộc đoạn SA. Một đường thẳng a không song song với AC cắt các cạnh AB, BC theo thứ tự tại J, K. Tìm giao tuyến của các cặp mp sau : a. mp ( I,a) và mp (SAC ) b. mp ( I,a) và mp (SAB ) c. mp ( I,a) và mp (SBC ) Giải a. Tìm giao tuyến của mp ( I,a) với mp (SAC ) : Ta có: • I ∈ SA mà SA ⊂ (SAC ) ⇒ I ∈ (SAC ) • I ∈ ( I,a) ⇒ I là điểm chung của hai mp ( I,a) và (SAC ) Trong (ABC ), a không song song với AC Gọi O = a ∩ AC Trang 1 a A b β α k S I D O B C A J C B E N D P M A L A B J C K O I S Bài tập Hình Học Không Gian – Lớp 11 • O ∈ AC mà AC ⊂ (SAC ) ⇒ O ∈ (SAC ) • O ∈ ( I,a) ⇒ O là điểm chung của hai mp ( I,a) và (SAC ) Vậy : IO là giao tuyến của hai mp ( I,a) và (SAC ) b. Tìm giao tuyến của mp ( I,a) với mp (SAB) : là JI c. Tìm giao tuyến của mp ( I,a) với mp (SBC ) Ta có : K là điểm chung của hai mp ( I,a) và mp (SBC ) Trong mp (SAC), gọi L = IO ∩ SC • L ∈ SC mà SC ⊂ (SBC ) ⇒ L ∈ (SBC ) • L ∈ IO mà IO ⊂ ( I,a) ⇒ L ∈ ( I,a ) ⇒ L là điểm chung của hai mp ( I,a) và (SBC ) Vậy: KL là giao tuyến của hai mp ( I,a) và (SBC ) 4. Cho bốn điểm A ,B ,C, D không cùng nằm trong một mp a. Chứng minh AB và CD chéo nhau b. Trên các đoạn thẳng AB và CD lần lượt lấy các điểm M, N sao cho đường thẳng MN cắt đường thẳng BD tại I. Hỏi điểm I thuộc những mp nào. Xđ giao tuyến của hai mp (CMN) và ( BCD) Giải a. Chứng minh AB và CD chéo nhau : Giả sử AB và CD không chéo nhau Do đó có mp ( α ) chứa AB và CD ⇒ A ,B ,C, D nằm trong mp ( α ) mâu thuẩn giả thuyết Vậy : AB và CD chéo nhau b. Điểm I thuộc những mp : • I ∈ MN mà MN ⊂ (ABD ) ⇒ I ∈ (ABD ) • I ∈ MN mà MN ⊂ (CMN ) ⇒ I ∈ (CMN ) • I ∈ BD mà BD ⊂ (BCD ) ⇒ I ∈ (BCD ) Xđ giao tuyến của hai mp (CMN) và ( BCD) là CI 5. Cho tam giác ABC nằm trong mp ( P) và a là mộtđường thẳng nằm trong mp ( P) và không song song với AB và AC. S là một điểm ở ngoài mặt phẳng ( P) và A’ là một điểm thuộc SA. Xđ giao tuyến của các cặp mp sau a. mp (A’,a) và (SAB) b. mp (A’,a) và (SAC) c. mp (A’,a) và (SBC) Giải a. Xđ giao tuyến của mp (A’,a) và (SAB) • A’ ∈ SA mà SA ⊂ ( SAB) ⇒ A’ ∈ ( SAB) • A’ ∈ ( A’,a) ⇒ A’ là điểm chung của ( A’,a) và (SAB ) Trong ( P), ta có a không song song với AB Gọi E = a ∩ AB • E ∈ AB mà AB ⊂ (SAB ) ⇒ E ∈ (SAB ) • E ∈ ( A’,a) ⇒ E là điểm chung của ( A’,a) và (SAB ) Vậy: A’E là giao tuyến của ( A’,a) và (SAB ) b. Xđ giao tuyến của mp (A’,a) và (SAC) • A’ ∈ SA mà SA ⊂ ( SAC) ⇒ A’ ∈ ( SAC) • A’ ∈ ( A’,a) ⇒ A’ là điểm chung của ( A’,a) và (SAC ) Trong ( P), ta có a không song song với AC Gọi F = a ∩ AC • F ∈ AC mà AC ⊂ (SAC ) ⇒ F ∈ (SAC ) • E ∈ ( A’,a) ⇒ F là điểm chung của ( A’,a) và (SAC ) Vậy: A’F là giao tuyến của ( A’,a) và (SAC ) c. Xđ giao tuyến của (A’,a) và (SBC) Trong (SAB ), gọi M = SB ∩ A’E • M ∈ SB mà SB ⊂ ( SBC) ⇒ M ∈ ( SBC) • M ∈ A’E mà A’E ⊂ ( A’,a) ⇒ M ∈ ( A’,a) Trang 2 M I C B D N A F a P E B C N M A A ‘ S Bài tập Hình Học Không Gian – Lớp 11 ⇒ M là điểm chung của mp ( A’,a) và (SBC ) Trong (SAC ), gọi N = SC ∩ A’F • N ∈ SC mà SC ⊂ ( SBC) ⇒ N ∈ ( SBC) • N ∈ A’F mà A’F ⊂ ( A’,a) ⇒ N ∈ ( A’,a) ⇒ N là điểm chung của mp ( A’,a) và (SBC ) Vậy: MN là giao tuyến của ( A’,a) và (SBC ) 6. Cho tứ diện ABCD, M là một điểm bên trong tam giác ABD, N là một điểm bên trong tam giác ACD. Tìm giao tuyến của các cặp mp sau a. (AMN) và (BCD) b. (DMN) và (ABC ) Giải a. Tìm giao tuyến của (AMN) và (BCD) Trong (ABD ), gọi E = AM ∩ BD • E ∈ AM mà AM ⊂ ( AMN) ⇒ E ∈ ( AMN) • E ∈ BD mà BD ⊂ ( BCD) ⇒ E ∈ ( BCD) ⇒ E là điểm chung của mp ( AMN) và (BCD ) Trong (ACD ), gọi F = AN ∩ CD • F ∈ AN mà AN ⊂ ( AMN) ⇒ F ∈ ( AMN) • F ∈ CD mà CD ⊂ ( BCD) ⇒ F ∈ ( BCD) ⇒ F là điểm chung của mp ( AMN) và (BCD ) Vậy: EF là giao tuyến của mp ( AMN) và (BCD ) b. Tìm giao tuyến của (DMN) và (ABC) Trong (ABD ), gọi P = DM ∩ AB • P ∈ DM mà DM ⊂ ( DMN) ⇒ P ∈ (DMN ) • P ∈ AB mà AB ⊂ ( ABC) ⇒ P ∈ (ABC) ⇒ P là điểm chung của mp ( DMN) và (ABC ) Trong (ACD), gọi Q = DN ∩ AC • Q ∈ DN mà DN ⊂ ( DMN) ⇒ Q ∈ ( DMN) • Q ∈ AC mà AC ⊂ ( ABC) ⇒ Q ∈ ( ABCA) ⇒ Q là điểm chung của mp ( DMN) và (ABC ) Vậy: PQ là giao tuyến của mp ( DMN) và (ABC ) Dạng 2 : Xác định giao điểm của đường thẳng a và mặt phẳng ( α ) Phương pháp : • Tìm đường thẳng b nằm trong mặt phẳng ( α ) • Giao điểm của a và b là giao đt a và mặt phẳng ( α ) Chú ý : Đường thẳng b thường là giao tuyến của mp (α) và mp (β) ⊃ a Cần chọn mp (β) chứa đường thẳng a sao cho giao tuyến của mp (α) và mp (β) dể xác định và giao tuyến không song song với đường thẳng a Bài tập : 1. Trong mp (α) cho tam giác ABC. Một điểm S không thuộc (α). Trên cạnh AB lấy một điểm P và trên các đoạn thẳng SA, SB ta lấy lần lượt hai điểm M, N sao cho MN không song song với AB. a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SPC ) b. Tìm giao điểm của đường thẳng MN với mặt phẳng (α) Giải a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SPC ) Cách 1 : Trong (SAB), gọi E = SP ∩ MN • E ∈ SP mà SP ⊂ (SPC) ⇒ E ∈(SPC) • E ∈ MN Vậy : E = MN ∩ (SPC ) Cách 2 : • Chọn mp phụ (SAB) ⊃ MN • ( SAB) ∩ (SPC ) = SP • Trong (SAB), gọi E = MN ∩ SP E ∈ MN Trang 3 B C E D F N M Q P A b a A β α A M D B P E C N S α Bài tập Hình Học Không Gian – Lớp 11 E ∈ SP mà SP ⊂ (SPC) Vậy : E = MN ∩ (SPC ) b. Tìm giao điểm của đường thẳng MN với mp ( α ) Cách 1: Trong (SAB), MN không song song với AB Gọi D = AB ∩ MN • D ∈ AB mà AB ⊂ (α) ⇒ D ∈(α) • D ∈ MN Vậy: D = MN ∩ (α) Cách 2 : • Chọn mp phụ (SAB) ⊃ MN • ( SAB) ∩ (α) = AB • Trong (SAB), MN không song song với AB Gọi D = MN ∩ AB D ∈ AB mà AB ⊂ (α) ⇒ D ∈(α) D ∈ MN Vậy : D = MN ∩ (α) 2. Cho tứ giác ABCD và một điểm S không thuộc mp (ABCD ). Trên đoạn SC lấy một điểm M không trùng với S và C. Tìm giao điểm của đường thẳng SD với mặt phẳng (ABM ) Giải • Chọn mp phụ (SBD) ⊃ SD • Tìm giao tuyến của hai mp ( SBD) và (ABM ) − Ta có B là điểm chung của ( SBD) và (ABM ) − Tìm điểm chung thứ hai của ( SBD) và (ABM ) Trong (ABCD ), gọi O = AC ∩ BD Trong (SAC ), gọi K = AM ∩ SO K∈ SO mà SO ⊂ (SBD) ⇒ K ∈( SBD) K∈ AM mà AM ⊂ (ABM ) ⇒ K ∈( ABM ) ⇒ K là điểm chung của ( SBD) và (ABM ) ⇒ ( SBD) ∩ (ABM ) = BK • Trong (SBD), gọi N = SD ∩ BK N∈ BK mà BK ⊂ (AMB) ⇒ N ∈(ABM) N ∈ SD Vậy : N = SD ∩ (ABM) 3. Cho tứ giác ABCD và một điểm S không thuộc mp (ABCD ). Trên đoạn AB lấy một điểm M, Trên đoạn SC lấy một điểm N ( M, N không trùng với các đầu mút ). a. Tìm giao điểm của đường thẳng AN với mặt phẳng (SBD) b. Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD) Giải a. Tìm giao điểm của đường thẳng AN với mặt phẳng (SBD) • Chọn mp phụ (SAC) ⊃ AN • Tìm giao tuyến của ( SAC) và (SBD) Trong (ABCD), gọi P = AC ∩ BD ⇒ ( SAC) ∩ (SBD) = SP • Trong (SAC), gọi I = AN ∩ SP I ∈ AN I ∈ SP mà SP ⊂ (SBD) ⇒ I ∈ (SBD) Vậy : I = AN ∩ (SBD) b. Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD) • Chọn mp phụ (SMC) ⊃ MN • Tìm giao tuyến của ( SMC ) và (SBD) Trong (ABCD), gọi Q = MC ∩ BD ⇒ ( SAC) ∩ (SBD) = SQ • Trong (SMC), gọi J = MN ∩ SQ J∈ MN J ∈ SQ mà SQ ⊂ (SBD) ⇒ J ∈ (SBD) Vậy: J = MN ∩ (SBD) 4. Cho một mặt phẳng (α) và một đường thẳng m cắt mặt phẳng (α) tại C. Trên m ta lấy hai điểm A, B và một điểm S trong không gian. Biết giao điểm của đường thẳng SA với mặt phẳng (α) Trang 4 M A D O C B S K N Q A C P D N I B M S Bài tập Hình Học Không Gian – Lớp 11 là điểm A’. Hãy xác định giao điểm của đường thẳng SB và mặt phẳng (α) Giải • Chọn mp phụ (SA’C) ⊃ SB • Tìm giao tuyến của ( SA’C ) và (α) Ta có ( SA’C ) ∩ (α) = A’C • Trong (SA’C ), gọi B’ = SB ∩ A’C B’∈ SB mà SB ⊂ (SA’C ) ⇒ B’ ∈ (SA’C) B’ ∈ A’C mà A’C ⊂ (α) ⇒ B’ ∈ (α) Vậy : B’= SB ∩ (α) 5. Cho bốn điểm A, B, C, S không cùng ở trong một mặt phẳng. Gọi I, H lần lượt là trung điểm của SA, AB .Trên SC lấy điểm K sao cho : CK = 3KS. Tìm giao điểm của đường thẳng BC với mặt phẳng ( IHK ) Giải • Chọn mp phụ (ABC) ⊃ BC • Tìm giao tuyến của ( ABC ) và (IHK) Trong (SAC) ,có IK không song song với AC Gọi E’ = AC ∩ IK ⇒ ( ABC ) ∩ ( IHK) = HE’ • Trong (ABC ), gọi E = BC ∩ HE’ E ∈ BC mà BC ⊂ ( ABC) ⇒ E ∈ ( ABC) E ∈ HE’ mà HE’ ⊂ ( IHK) ⇒ E ∈ ( IHK) Vậy: E = BC ∩ ( IHK) 6. Cho tứ diện SABC .Gọi D là điểm trên SA, E là điểm trên SB và F là điểm trên AC ( DE và AB không song song ). a. Xđ giao tuyến của hai mp (DEF) và ( ABC ) b. Tìm giao điểm của BC với mặt phẳng ( DEF ) c. Tìm giao điểm của SC với mặt phẳng ( DEF ) Giải a. Xđ giao tuyến của hai mp (DEF) và ( ABC ) Ta có : F là điểm chung của hai mặt phẳng (ABC) và (DEF) Trong (SAB), AB không song song với DE Gọi M = AB ∩ DE • M ∈ AB mà AB ⊂ (ABC) ⇒ M ∈ (ABC) • M ∈ DE mà DE ⊂ (DEF) ⇒ M ∈ (DEF) ⇒ M là điểm chung của hai mặt phẳng (ABC) và (DEF) Vậy: FM là giao tuyến của hai mặt phẳng (ABC) và (DEF) b. Tìm giao điểm của BC với mặt phẳng ( DEF ) • Chọn mp phụ (ABC) ⊃ BC • Tìm giao tuyến của ( ABC ) và (DEF) Ta có (ABC) ∩ (DEF) = FM hình 1 • Trong (ABC), gọi N = FM ∩ BC N∈ BC N ∈ FM mà FM ⊂ (DEF) ⇒ N ∈ (DEF) Vậy: N = BC ∩ (DEF) c. Tìm giao điểm của SC với mặt phẳng ( DEF ) • Chọn mp phụ (SBC) ⊃ SC • Tìm giao tuyến của ( SBC ) và (DEF) Ta có: E là điểm chung của ( SBC ) và (DEF) ο N ∈ BC mà BC ⊂ (SBC) ⇒ N ∈ (SBC) ο N ∈ FM mà FM ⊂ (DEF) ⇒ N ∈ (DEF) ⇒ N là điểm chung của ( SBC ) và (DEF) Ta có (SBC) ∩ (DEF) = EN • Trong (SBC), gọi K = EN ∩ SC K∈ SC K ∈ EN mà EN ⊂ (DEF) ⇒ K ∈ (DEF) hình 2 Vậy: K = SC ∩ (DEF) 7. Cho hình chóp S.ABCD .Gọi O là giao điểm của AC và BD. M, N, P lần lượt là các điểm trên Trang 5 N K A M E D F C B S E E’ K A C B H I S A B S m C B’ A’ α N M F E K D C B A S Bài tập Hình Học Không Gian – Lớp 11 SA, SB ,SD. a. Tìm giao điểm I của SO với mặt phẳng ( MNP ) b. Tìm giao điểm Q của SC với mặt phẳng ( MNP ) Giải a. Tìm giao điểm I của SO với mặt phẳng ( MNP ) • Chọn mp phụ (SBD) ⊃ SO • Tìm giao tuyến của ( SBD ) và (MNP) Ta có N ∈ MN mà MN ⊂ (MNP) ⇒ N ∈ (MNP) N ∈ SB mà SB ⊂ (SBD) ⇒ N ∈ (SBD) ⇒ N là điểm chung của ( SBD ) và (MNP) P ∈ MP mà MN ⊂ (MNP) ⇒ P ∈ (MNP) P ∈ SD mà SD ⊂ (SBD) ⇒ P ∈ (SBD) ⇒ P là điểm chung của ( SBD ) và (MNP) ⇒ (MNP) ∩ (SBD) = NP • Trong (SBD), gọi I = SO ∩ NP I ∈ SO I ∈ NP mà NP ⊂ (MNP) ⇒ I ∈ (MNP) Vậy: I = SO ∩ (MNP) b. Tìm giao điểm Q của SC với mặt phẳng ( MNP ) • Chọn mp phụ (SAC) ⊃ SC • Tìm giao tuyến của ( SAC ) và (MNP) Ta có M ∈ MN mà MN ⊂ (MNP) ⇒ M ∈ (MNP) M ∈ SA mà SA ⊂ (SAC) ⇒ M ∈ (SAC) ⇒ M là điểm chung của ( SAC ) và (MNP) I ∈ MI mà MI ⊂ (MNP) ⇒ I ∈ (MNP) I ∈ SO mà SO ⊂ (SAC) ⇒ I ∈ (SAC) ⇒ I là điểm chung của ( SAC ) và (MNP) ⇒ ( SAC) ∩ (SBD) = MI • Trong (SAC), gọi Q = SC ∩ MI Q∈ SC Q∈ MI mà MI ⊂ (MNP) ⇒ Q ∈ (MNP) Vậy: Q = SC ∩ (MNP) 8. Cho tứ diện ABCD .Gọi M,N lần lượt là trung điểm AC và BC. K là điểm trên BD và không trùng với trung điểm BD. a. Tìm giao điểm của CD và (MNK ) b. Tìm giao điểm của AD và (MNK ) Giải a. Tìm giao điểm của CD và (MNK ) : • Chọn mp phụ (BCD) ⊃ SC • Tìm giao tuyến của ( BCD ) và (MNK) Ta có N ∈ (MNK) N ∈ BC mà BC ⊂ (BCD) ⇒ N ∈ (BCD) ⇒ N là điểm chung của (BCD ) và (MNK) K ∈ (MNK) K ∈ BD mà BD ⊂ (BCD) ⇒ K ∈ (BCD) ⇒ K là điểm chung của (BCD ) và (MNK) ⇒ (BCD) ∩ (MNK) = NK • Trong (BCD), gọi I = CD ∩ NK I∈ CD I∈ NK mà NK ⊂ (MNK) ⇒ I ∈ (MNK) Vậy: I = CD ∩ (MNK) b. Tìm giao điểm của AD và (MNK ) • Chọn mp phụ (ACD) ⊃ AD • Tìm giao tuyến của (ACD ) và (MNK) Ta có: M ∈ (MNK) M ∈ AC mà AC ⊂ (ACD) ⇒ M ∈ (ACD) ⇒ M là điểm chung của (ACD ) và (MNK) I∈ NK mà NK ⊂ (MNK) ⇒ I ∈ (MNK) Trang 6 I Q P N M O D C B A S J I B D C N K M A Bài tập Hình Học Không Gian – Lớp 11 I ∈ CD mà CD ⊂ (ACD) ⇒ I ∈ (ACD) ⇒ I là điểm chung của (ACD ) và (MNK) ⇒ (ACD) ∩ (MNK) = MI • Trong (BCD), gọi J = AD ∩ MI J∈ AD J∈ MI mà MI ⊂ (MNK) ⇒ J ∈ (MNK) Vậy: J = AD ∩ (MNK) 9. Cho tứ diện ABCD .Gọi M,N là hai điểm trên AC và AD. O là điểm bên trong tamgiác BCD. Tìm giao điểm của : a. MN và (ABO ) b. AO và (BMN ) Giải a. Tìm giao điểm của MN và (ABO ): • Chọn mp phụ (ACD) ⊃ MN • Tìm giao tuyến của (ACD ) và (ABO) Ta có : A là điểm chung của (ACD ) và (ABO) Trong (BCD), gọi P = BO ∩ DC P∈ BO mà BO ⊂ (ABO) ⇒ P ∈ (ABO) P∈ CD mà CD ⊂ (ACD) ⇒ P ∈ (ACD) ⇒ P là điểm chung của (ACD ) và (ABO) ⇒ (ACD) ∩ (ABO) = AP • Trong (ACD), gọi Q = AP ∩ MN Q∈ MN Q∈ AP mà AP ⊂ (ABO) ⇒ Q ∈ (ABO) Vậy: Q = MN ∩ (ABO) b. Tìm giao điểm của AO và (BMN ) : • Chọn mp (ABP) ⊃ AO • Tìm giao tuyến của (ABP ) và (BMN) Ta có : B là điểm chung của (ABP ) và (BMN) Q ∈ MN mà MN ⊂ (BMN) ⇒ Q ∈ (BMN) Q ∈ AP mà AP ⊂ (ABP) ⇒ Q ∈ (ABP) ⇒ Q là điểm chung của (ABP ) và (BMN) ⇒ (ABP) ∩ (BMN) = BQ • Trong (ABP), gọi I = BQ ∩ AO I∈ AO I∈ BQ mà BQ ⊂ (BMN) ⇒ I ∈ (BMN) Vậy: I = AO ∩ (BMN) 10. Trong mp (α) cho hình thang ABCD, đáy lớn AB. Gọi I ,J, K lần lượt là các điểm trên SA, AB, BC ( K không là trung điểm BC). Tìm giao điểm của : a. IK và (SBD) b. SD và (IJK ) c. SC và (IJK ) Giải a. Tìm giao điểm của IK và (SBD) • Chọn mp phụ (SAK) ⊃ IK • Tìm giao tuyến của (SAK ) và (SBD) Ta có : S là điểm chung của (SAK ) và (SBD) Trong (ABCD), gọi P = AK ∩ BD P ∈ AK mà AK ⊂ (SAK) ⇒ P ∈ (SAK) P ∈ BD mà BD ⊂ (SBD) ⇒ P ∈ (SBD) ⇒ P là điểm chung của (SAK ) và (SBD) ⇒ (SAK) ∩ (SBD) = SP • Trong (SAK), gọi Q = IK ∩ SP Q ∈ IK Q ∈ SP mà SP ⊂ (SBD) ⇒ Q ∈ (SBD) Vậy: Q = IK ∩ (SBD) b. Tìm giao điểm của SD và (IJK ) : • Chọn mp phụ (SBD) ⊃ SD • Tìm giao tuyến của (SBD ) và (IJK) Trang 7 O Q P N M I C D B A N F M Q P K J I C B D A S Bài tập Hình Học Không Gian – Lớp 11 Ta có : Q là điểm chung của (IJK ) và (SBD) Trong (ABCD), gọi M = JK ∩ BD M ∈ JK mà JK ⊂ ( IJK) ⇒ M ∈ (IJK) M ∈ BD mà BD ⊂ (SBD) ⇒ M ∈ (SBD) ⇒ M là điểm chung của (IJK ) và (SBD) ⇒ (IJK) ∩ (SBD) = QM • Trong (SBD), gọi N = QM ∩ SD N ∈ SD N ∈ QM mà QM ⊂ (IJK) ⇒ N ∈ (IJK) Vậy: N = SD ∩ (IJK) c. Tìm giao điểm của SC và (IJK ) : • Chọn mp phụ (SAC) ⊃ SC • Tìm giao tuyến của (SAC ) và (IJK) Ta có : I là điểm chung của (IJK ) và (SAC) Trong (ABCD), gọi E = AC ∩ JK E ∈ JK mà JK ⊂ ( IJK) ⇒ E ∈ ( IJK) E ∈ AC mà AC ⊂ (SAC) ⇒ E ∈ (SAC) ⇒ E là điểm chung của (IJK ) và (SAC) ⇒ ( IJK) ∩ (SAC) = IE • Trong (SAC), gọi F = IE ∩ SC F ∈ SC F ∈ IE mà IE ⊂ ( IJK) ⇒ F ∈ ( IJK) Vậy : F = SC ∩ ( IJK ) 11.Cho tứ diện ABCD. Trên AC và AD lấy hai điểm M,N sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD. a. Tìm giao tuyến của (OMN ) và (BCD ) b. Tìm giao điểm của BC với (OMN) c. Tìm giao điểm của BD với (OMN) Giải a. Tìm giao tuyến của (OMN ) và (BCD ): Ta có : O là điểm chung của (OMN ) và (BCD ) Trong (ACD), MN không song song CD Gọi I = MN ∩ CD ⇒ I là điểm chung của (OMN ) và (BCD ) Vậy : OI = (OMN ) ∩ (BCD ) b. Tìm giao điểm của BC với (OMN): Trong (BCD), gọi P = BC ∩ OI Vậy : P = BC ∩ ( OMN ) c. Tìm giao điểm của BD với (OMN): Trong (BCD), gọi Q = BD ∩ OI Vậy : Q = BD ∩ ( OMN ) 12.Cho hình chóp S.ABCD. Trong tam giác SBC lấy điểm M trong tam giác SCD lấy điểm N a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SAC) b. Tìm giao điểm của cạnh SC với mặt phẳng (AMN) Giải a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SAC) : • Chọn mp phụ (SMN) ⊃ MN • Tìm giao tuyến của (SAC ) và (SMN) Ta có : S là điểm chung của (SAC ) và (SMN) Trong (SBC), gọi M’ = SM ∩ BC Trong (SCD), gọi N’ = SN ∩ CD Trong (ABCD), gọi I = M’N’ ∩ AC I ∈ M’N’ mà M’N’ ⊂ (SMN) ⇒ I ∈ ( SMN) I ∈ AC mà AC ⊂ (SAC) ⇒ I ∈ (SAC) ⇒ I là điểm chung của (SMN ) và (SAC) ⇒ ( SMN) ∩ (SAC) = SI • Trong (SMN), gọi O = MN ∩ SI Trang 8 P I Q O M D N C B A M N B C N’ E D M’ I O A S Bài tập Hình Học Không Gian – Lớp 11 O ∈ MN O ∈ SI mà SI ⊂ ( SAC) ⇒ O ∈ ( SAC) Vậy : O = MN ∩ ( SAC ) b. Tìm giao điểm của cạnh SC với mặt phẳng (AMN) : • Chọn mp phụ (SAC) ⊃ SC • Tìm giao tuyến của (SAC ) và (AMN) Ta có : ( SAC) ∩ (AMN) = AO • Trong (SAC), gọi E = AO ∩ SC E ∈ SC E ∈ AO mà AO ⊂ ( AMN) ⇒ E ∈ ( AMN) Vậy : E = SC ∩ ( AMN ) Dạng 3 : Chứng minh ba điểm thẳng hàng Phương pháp : • Chứng minh ba điểm đó cùng thuộc hai mp phân biệt • Khi đó ba điểm thuộc đường thẳng giao tuyến của hai mp Bài tập : 1. Cho hình bình hành ABCD. S là điểm không thuộc (ABCD) ,M và N lần lượt là trung điểm của đoạn AB và SC. a. Xác định giao điểm I = AN ∩ (SBD) b. Xác định giao điểm J = MN ∩ (SBD) c. Chứng minh I, J, B thẳng hàng Giải a. Xác định giao điểm I = AN ∩ (SBD ) • Chọn mp phụ (SAC) ⊃ AN • Tìm giao tuyến của (SAC ) và (SBD) ⇒ ( SAC) ∩ (SBD) = SO • Trong (SAC), gọi I = AN ∩ SO I ∈ AN I ∈ SO mà SO ⊂ ( SBD) ⇒ I ∈ ( SBD) Vậy: I = AN ∩ ( SBD) b. Xác định giao điểm J = MN ∩ (SBD) • Chọn mp phụ (SMC) ⊃ MN • Tìm giao tuyến của (SMC ) và (SBD) S là điểm chung của (SMC ) và (SBD) Trong (ABCD), gọi E = MC ∩ BD ⇒ ( SAC) ∩ (SBD) = SE • Trong (SMC), gọi J = MN ∩ SE J∈ MN J∈ SE mà SE ⊂ ( SBD) ⇒ J ∈ ( SBD) Vậy J = MN ∩ ( SBD) c. Chứng minh I, J, B thẳng hàng Ta có : B là điểm chung của (ANB) và ( SBD) • I ∈ SO mà SO ⊂ ( SBD) ⇒ I ∈ ( SBD) • I ∈ AN mà AN ⊂ (ANB) ⇒ I ∈ (ANB) ⇒ I là điểm chung của (ANB) và ( SBD) • J ∈ SE mà SE ⊂ ( SBD) ⇒ J∈ ( SBD) • J ∈ MN mà MN ⊂ (ANB) ⇒ J ∈ (ANB) ⇒ J là điểm chung của (ANB) và ( SBD) Vậy : B, I, J thẳng hàng 2. Cho tứ giác ABCD và S ∉ (ABCD). Gọi I, J là hai điểm trên AD và SB, AD cắt BC tại O và OJ cắt SC tại M. a. Tìm giao điểm K = IJ ∩ (SAC) b. Xác định giao điểm L = DJ ∩ (SAC) c. Chứng minh A ,K ,L ,M thẳng hàng Giải a. Tìm giao điểm K = IJ ∩ (SAC) • Chọn mp phụ (SIB) ⊃ IJ Trang 9 I J E A B C M N D S O M K F E L A D C B O J I S J E I O S C N M B A D Bài tập Hình Học Không Gian – Lớp 11 • Tìm giao tuyến của (SIB ) và (SAC) S là điểm chung của (SIB ) và (SAC) Trong (ABCD), gọi E = AC ∩ BI ⇒ (SIB) ∩ ( SAC) = SE • Trong (SIB), gọi K = IJ ∩ SE K∈ IJ K∈ SE mà SE ⊂ (SAC ) ⇒ K ∈ (SAC) Vậy: K = IJ ∩ ( SAC) b. Xác định giao điểm L = DJ ∩ (SAC) • Chọn mp phụ (SBD) ⊃ DJ • Tìm giao tuyến của (SBD ) và (SAC) S là điểm chung của (SBD ) và (SAC) Trong (ABCD), gọi F = AC ∩ BD ⇒ (SBD) ∩ ( SAC) = SF • Trong (SBD), gọi L = DJ ∩ SF L∈ DJ L∈ SF mà SF ⊂ (SAC ) ⇒ L ∈ (SAC) Vậy : L = DJ ∩ ( SAC) c. Chứng minh A ,K ,L ,M thẳng hàng Ta có :A là điểm chung của (SAC) và ( AJO) • K ∈ IJ mà IJ ⊂ (AJO) ⇒ K∈ (AJO) • K ∈ SE mà SE ⊂ (SAC ) ⇒ K ∈ (SAC ) ⇒ K là điểm chung của (SAC) và ( AJO) • L ∈ DJ mà DJ ⊂ (AJO) ⇒ L ∈ (AJO) • L ∈ SF mà SF ⊂ (SAC ) ⇒ L ∈ (SAC ) ⇒ L là điểm chung của (SAC) và ( AJO) • M ∈ JO mà JO ⊂ (AJO) ⇒ M ∈ (AJO) • M ∈ SC mà SC ⊂ (SAC ) ⇒ M ∈ (SAC ) ⇒ M là điểm chung của (SAC) và ( AJO) Vậy : A ,K ,L ,M thẳng hàng 3. Cho tứ diện SABC.Gọi L, M, N lần lượt là các điểm trên các cạnh SA, SB và AC sao cho LM không song song với AB, LN không song song với SC. a. Tìm giao tuyến của mp (LMN) và (ABC) b. Tìm giao điểm I = BC ∩ ( LMN) và J = SC ∩ ( LMN) c. Chứng minh M, I, J thẳng hàng Giải a. Tìm giao tuyến của mp (LMN) và (ABC) Ta có : N là điểm chung của (LMN) và (ABC) Trong (SAB), LM không song song với AB Gọi K = AB ∩ LM K ∈ LM mà LM ⊂ (LMN ) ⇒ K ∈ (LMN ) K ∈ AB mà AB ⊂ ( ABC) ⇒ K ∈ ( ABC) b. Tìm giao điểm I = BC ∩ ( LMN) • Chọn mp phụ (ABC) ⊃ BC • Tìm giao tuyến của (ABC ) và (LMN) ⇒ (ABC) ∩ ( LMN) = NK • Trong (ABC), gọi I = NK ∩ BC I∈ BC I∈ NK mà NK ⊂ (LMN ) ⇒ I ∈ (LMN) Vậy : I = BC ∩ ( LMN) Tìm giao điểm J = SC ∩ ( LMN) • Trong (SAC), LN không song song với SC gọi J = LN ∩ SC J∈ SC J∈ LN mà LN ⊂ (LMN ) ⇒ J ∈ (LMN) Vậy : J = SC ∩ ( LMN) c. Chứng minh M, I, J thẳng hàng Trang 10 K J I S C M L N B A […]… ˆ 0 Ta có : Q = 45  ˆ 0  M = 90 ⇒ ∆AQM cân tại M ⇒ MQ = AM = x Tính MQ : Xét tam giác SAO : Ta có : MN OM = MN // SA ⇒ AS OA S MNPQ = MQ.MN = x.(a − x 2 ) = ⇒ a 2 −x OM MN = AS = a 2 = a − x 2 OA a 2 2 ⇒ 1 2 x 2 (a − x 2 ) x 2 và a − x 2 x 2 + a − x 2 ) 2 x 2 (a − x 2 ) ≤ ( ) 2 a² ≤ 4 1 a² a² a² S MNPQ ≤ = ⇒ S MNPQmã = ⇒ 2 4 4 2 4 2 Áp dụng bất đẳng thức Côsi cho 2 số dương a a 2 = 4 2 2 Vậy :… MNPQ 1 S INP = x 2 2 1 1 1 = a 2 − x 2 = (a 2 − x 2 ) 2 2 2 2 3.a 1 2 3.a 2 ⇒ = (a − x 2 ) = 8 2 8 ⇔ x2 = a2 − ⇔ 3.a 2 4 x2 = ⇔ A a2 4 a x= 2 C D G3 5 Cho hai hình bình hành ABCD và ABEF có chung cạnh AB và nằm trong hai mặt phẳng phân E J tam giác biệt Gọi M, N thứ tự là trung điểm của AB, BC và I, J, K theo thứ tự M trọng tâm các là ADF, ADC, BCE Chứng minh (IJK) // (CDFE) G1 Giải F Xét tam… (α )  – a ∩ b = M a //( β ), b //( β )  ⇒ (α ) //( β ) α a M hình 1 N Trang 23 β b c d Bài tập Hình Học Không Gian – Lớp 11 a ⊂ (α ), b ⊂ (α ) a ∩ b = M   – c ⊂ ( β ), d ⊂ ( β ) c ∩ d = N  a // c, b // d  (α ) //( β ) ⇒ hình 2 – (α ) //(γ )  ( β ) //(γ ) α (α ) //( β ) ⇒ β γ hình 3 Bài tập : 1.Cho hình chóp S.ABCD đáy là hình bình hành tâm O Gọi M, N lần lượt là trung điểm của SA ,SD… Ta có : cos B = Tính MQ : Xét tam giác SAB, ta có : MQ // SB ⇒ MQ AM = SB AB ⇒ MQ = AM Tính NP : Xét tam giác SBC, ta có : NP // SB ⇒ NP CN = SB CB Do đó : S MNPQ = ⇒ NP = CN SB a = (a − x) = a − x AB a SB a 2a − x = (2a − x ) = CB 2a 2 x ( 4a − 3 x ) 1 = 3 x.(4a − 3 x) 4 12 Áp dụng bất đẳng thức Côsi cho 2 số dương 3x và 4a − 3x 3x.( 4a − 3x) ≤ ( 3 x + 4a − 3 x 2 ) 2 Trang 20 Bài tập Hình Học Không. .. MC 3 ⇒ IJ // FC F (2)  IJ // FC   IK // FE ⇒ ( IJK ) //(CEF ) 6 Cho tứ diện ABCD Gọi G1, G 2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB a Chứng minh : (G1G2 G3 ) //( BCD) Trang 27 D K B N C (1) MI NK 1 = = Ta có : MF NE 3 ⇒ IK // FE ( IJK ) //(CEF ) M A Xét hình bình hành MNEF : Vậy : N G2 BI Ta có : Từ (1) và (2), ta được G E Bài tập Hình Học Không Gian – Lớp 11 b Tìm thiết diện… Vậy : b Ta có : Tương tự : NN 1 // AI MM 1 // AI Từ (3) và (4), suy ra Ta được : Vậy : M 1 N 1 // DF   DF ⊂ ( DEF ) M 1 N 1 //( DEF ) AN 1 IN 1 = = N 1 F NE 2 AM 1 IM 1 = = ⇒ M 1 D MD 2 AN 1 AM 1 1 = = ⇒ N1 F M 1 D 2 ⇒ ⇒ M 1 N 1 //( DEF ) Trang 25 B I D I là trung điểm AB và Từ (1) và (2), suy ra E F IB NB 1 = = Ta có : EF NF 2 (3) (4) M 1 N 1 // DF Bài tập Hình Học Không Gian – Lớp 11 c ( MNM… (α): Thiết diện là tứ giác MPQN c Tìm điếu kiện của MN để thiểt diện là hình thang: R B Trang 17 b C Bài tập Hình Học Không Gian – Lớp 11  MP // QN  MN // PQ  Ta có : MPQN là hình thang ⇒ SA // MP  MP//QN SA // QN Do đó :  QN ⊂ ( SCD) Xét (1) ,ta có ⇒ ⇒ (1) (2) SA // QN SA //( SCD) ( vô lí ) BC = (ABCD) ∩ (SBC)  Xét (2) ,ta có MN ⊂ (ABCD) PQ ⊂ (SBC)  ⇒  PQ = α ∩ ( SBC )  Ngược lại, nếu… MNPQ là hình chữ nhật Vậy : MNPQ là hình chữ nhật Tính diện tích MNPQ theo a và x: Ta có : S MNPQ = MQ.MN Tính MQ : Xét tam giác AQM : Trang 21 D A (α ) // BD  ⇒ NP // BD (2) Tương tự :  BD ⊂ ( SBO) (α ) ∩ ( SBO) = NP  Từ (1) và (2), suy ra MQ // NP // BD (3) (α ) // SA  ⇒ MN // SA ( 4) Mặt khác : SA ⊂ ( SAO) (α ) ∩ ( SAO) = MN  b I P (5) M O C Bài tập Hình Học Không Gian – Lớp 11 ˆ Α =… (ABCD) Tương tự, Ta Bài tập Hình Học Không Gian – Lớp 11 Đặt x = BM ( 0 < x < a ) a Chứng minh MNPQ là hình thang vuông b Tính diện tích của hình thang theo a và x Tính x để diện tích này lớn nhất Giải a Chứng minh MNPQ là hình thang vuông : ( β ) // OA  Ta có : OA ⊂ ( ABC ) MN = ( β ) ∩ ( ABC )  ⇒ MN // OA (1) ( β ) // SB  SB ⊂ ( SAB ) MQ = ( β ) ∩ ( SAB )  ⇒ MQ // SB (2) ( β ) // SB ... song với một mặt phẳng cố định y Giải Kẻ Bx’// Ax Trên Bx’ lấy điểm M’ sao cho AM = BM’ Trang 28 t Bài tập Hình Học Không Gian – Lớp 11  AM // BM '  AM = BM ' T a có :  ⇒ ABM’M là hình bình hành ⇒ MM’//AB ⇒ ∆BM’N cân tại B Kẻ Bt là phân giác góc x’By ⇒ M’N ⊥ Bt Trong (x’By), kẻ Bz ⊥ Bt Từ (2) và (3), ta được Bz // M’N MM ' // AB ⇒ M ' N // Bz Từ (1) và (4),  (1) (2) (3) (4) ( MNM ' ) //( ABz. Bài tập Hình Học Không Gian – Lớp 11 BÀI TẬP HÌNH KHÔNG GIAN 11 Dạng 1 : Xác định giao tuyến của hai mặt phẳng ( α ) và ( β ) Phương. để thiểt diện là hình thang: Trang 17 Q G 1 I G 2 S D C M N P A B N S M A B C D P Q R N S M A B C D P Q R Bài tập Hình Học Không Gian – Lớp 11 Ta có : MPQN là hình thang ⇒ )2( )1( // //    PQMN QNMP Xét. 14 N M S A B D C A' B' C' D' I E S B C M N P D A Bài tập Hình Học Không Gian – Lớp 11 Xét ∆ ASI, ta có : SI // MN ( vì cùng song song AB) M là trung điểm AB ⇒ SI // 2MN Mà AB // 2. MN Do đó : SI // AB Vậy : tứ giác SABI là hình bình

Source: https://vh2.com.vn
Category : Trái Đất