Simulacrum, từ simulacrum Latin, là một sự bắt chước, giả mạo hoặc hư cấu. Khái niệm này được liên kết với mô phỏng, đó là hành động mô phỏng .Một...
Lập Trình Trợ Lý Ảo Tiếng Việt Toàn Diện Với Python
Ngoài Siri của Apple, Alexa của Amazon và gần đây là Google Asisstant của Google, còn gì tuyệt vời hơn khi biết bạn cũng có thể tự tạo cho mình một con trợ lý ảo, ngay cả phiên bản tiếng việt. Nào bắt tay vào làm thôi.
Trong bài viết, mình sẽ đi chi tiết cụ thể làm thế nào để viết một trở lý ảo tiếng việt bằng Python, mình gọi tên cậu ấy là Alex .
Nhiều bạn vẫn chưa thực sự được tiếp cận với trí tuệ tự tạo hay đơn cử hơn là giải quyết và xử lý ngôn từ tự nhiên hay một con trợ lý ảo nghĩa là gì. Thực sự, trí tuệ tự tạo nói chung và giải quyết và xử lý ngôn từ tự nhiên góp phần to lớn như thế nào so với ngành công nghệ thông tin. Mình chọn sử dung python, Python là một ngôn từ lập trình có một bộ thư viện đa năng. Nên trí tuệ tự tạo giờ đây cũng trở nên đơn thuần hơn với tất cả chúng ta. Mình sẽ cụ thể hóa những chi tiết cụ thể giúp bạn tưởng tượng những việc làm để làm một con trợ lý ảo nhé .
Trợ lý ảo đã phát triển thế nào?
Bạn đang đọc: Lập Trình Trợ Lý Ảo Tiếng Việt Toàn Diện Với Python
Timeline trợ lý ảo từ 2010 đến nay
Gần đây, Trợ lý ảo đã có được nền tảng chính sau khi Apple tích hợp Trợ lý ảo đáng kinh ngạc nhất – Siri, chính thức là một phần của Apple Inc. Nhưng dòng thời hạn của sự tiến hóa vĩ đại nhất khởi đầu từ sự kiện năm 1962 tại Hội chợ Thế giới Seattle nơi IBM tọa lạc cỗ máy độc lạ gọi là Shoebox. Đó là kích cỡ thực tiễn của một hộp đựng giày và hoàn toàn có thể triển khai những công dụng khoa học và hoàn toàn có thể phân biệt 16 từ và cũng hoàn toàn có thể nói chúng bằng giọng nói dễ nhận ra của con người với 0 đến 9 chữ số .
Sau đó trong tiến trình những năm 1970, những nhà nghiên cứu tại Đại học Carnegie Mellon ở Pittsburgh, Pennsylvania cùng với sự tương hỗ của Bộ Quốc phòng Hoa Kỳ và Cơ quan Dự án Nghiên cứu Quốc phòng Tiên tiến ( DARPA ) – đã tạo ra chiếc máy Harpy. Nó hoàn toàn có thể hiểu gần 1.000 từ, gần bằng từ vựng của một đứa trẻ ba tuổi .
Vào tháng 4 năm 1997, Dragon NataturalSpeaking là phần mềm chỉnh sửa chính tả đầu tiên có thể hiểu khoảng 100 từ và biến nó thành nội dung có thể đọc được. Theo dòng thời gian, xử lý ngôn ngữ tự nhiên và trợ lý ảo được đầu tư nghiên cứu mạnh mẽ, trải qua những cột mốc quan trọng và đạt được thành tựu thông minh như ngày hôm nay.
Kiến thức cần có
- AI – Artificial Intelligence hay còn gọi là Trí tuệ nhân tạo là một ngành khoa học, kỹ thuật chế tạo máy móc thông minh, đặc biệt là các chương trình máy tính thông minh. AI được thực hiện bằng cách nghiên cứu cách suy nghĩ của con người, cách con người học hỏi, quyết định và làm việc trong khi giải quyết một vấn đề nào đó, và sử dụng những kết quả nghiên cứu này như một nền tảng để phát triển các phần mềm và hệ thống thông minh, từ đó áp dụng vào các mục đích khác nhau trong cuộc sống. Nói một cách dễ hiểu thì AI là việc sử dụng, phân tích các dữ liệu đầu vào nhằm đưa ra sự dự đoán rồi đi đến quyết định cuối cùng.
- Xử lý ngôn ngữ tự nhiên(natural language processing– NLP ) là một nhánh củatrí tuệ nhân tạotập trung chuyên sâu vào những ứng dụng trênngôn ngữcủa con người. Trong trí tuệ tự tạo thì giải quyết và xử lý ngôn từ tự nhiên là một trong những phần khó nhất vì nó tương quan đến việc phải hiểu ý nghĩa ngôn ngữ-công cụ hoàn hảo nhất nhất củatư duyvàgiao tiếp.
- Trợ lý ảo (Virtual Assistant ) hay còn gọi là trợ lýhay trợ lý kỹ thuật số, là chương trình ứng dụng được phong cách thiết kế để ” hiểu ” những lệnh thoại bằng ngôn từ tự nhiên và triển khai những tác vụ cho người dùng. Các tác vụ này gồm có đọc tin nhắn văn bản hoặc địa chỉ email, tìm kiếm số điện thoại cảm ứng, lên lịch, đặt cuộc gọi điện và nhắc nhở người dùng cuối về những cuộc hẹn .
Phải nói rằng, sẽ thật tuyệt vời nếu hoàn toàn có thể tự mình tạo ra một trợ lý ảo ngay trên chiếc máy tính để bàn hay máy tính của mình với những tiện ích đơn thuần như :
- Giao tiếp, chào hỏi
- Cho bạn biết thời hạn hiện tại
- Khởi chạy ứng dụng mạng lưới hệ thống và mở bất kể website nào trên trình duyệt Chrome
- Mở Google search và tìm kiếm thay cho bạn
- Gửi email đến những người trong danh bạ của bạn
- Cho bạn biết thời tết và nhiệt độ hiện tại của hầu hết mọi thành phố
- Phát cho bạn một bài hát trên Youtube
- Thay đổi hình nền máy tính
- Cho bạn biết tin tức mới nhất
- Nói cho bạn về hấu hết mọi thứ bạn nhu yếu
Do đó, ở trong bài viết này, mình sẽ xây dựng một ứng dụng tiếng việt có khả năng thực hiện tất cả các nhiệm vụ trên. Mình tương tác với trợ lý ảo trên laptop và mình sẽ gọi bạn ấy là Alex.
Nào tất cả chúng ta khởi đầu thôi. Let’s go ! ! ! !
Nguyên liệu cần chuẩn bị
-
System requirements:
Python 3.7.6, Jupyter notebook, Anaconda.
- Libraries:
- speech_recognition: Nhận dạng giọng nói
- time, datetime: Xử lý thời gian
- wikipedia: Tìm kiếm trên từ điển wikipedia
- webbrowser, selenium, webdriver_manager, urllib: Truy cập web, trình duyệt (Chrome)
- gTTS: Chuyển văn bản thành âm thanh của Google (Chị Google)
- requests: Crawl thông tin từ web
- smtplib: Gửi Email bằng giao thức SMTP
- re: Biểu thức chính quy (Regular Expression)
- os, sys, ctypes: Truy cập, xử lý file hệ thống
- playsound: Phát âm thanh từ file mp3
- json: Xử lý kiểu dữ liệu JSON
- youtube_search: Tìm kiếm video trên Youtube
Cài đặt
Anaconda là một công cụ tổng hợp đã tích hợp sẵn rất nhiều các gói phần mềm, thư viện giúp chúng ta có một môi trường để thực hiện xây dựng các ứng dụng Python. Anacoda cũng tích hợp sẵn conda
bên trong do đó bạn chỉ cần cài đặt Anacoda là đủ.
Khi cài đặt xong, bạn mở Anaconda Prompt
(có thể tìm thấy trong thư mục cài đặt Anaconda), di chuyển đến thư mục chứa project
và thực hiện chạy Jupyter Notebook
bằng câu lệnh:
jupyter notebook
Cửa số hiện lên, bạn chỉ cần vào new
chọn python 3
ta đã có một notebook
có thể chạy Python dưới dạng các interactive shell
Cuối cùng là việc cài đặt các thư viện cần thiết, chúng ta tiếp tục vào Anaconda Prompt
và thực hiện cài các Python Package
thông qua gói thư viện pip
. Ví dụ, ta muốn cài đặt thư viện abcxyz
thì gõ câu lệnh:
pip install abcxyz
Xây dựng trợ lý ảo tiếng việt Alex
1. Import các thư viện cần thiết
import os
import playsound
import speech_recognition as sr
import time
import sys
import ctypes
import wikipedia
import datetime
import json
import re
import webbrowser
import smtplib
import requests
import urllib
import urllib.request as urllib2
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from webdriver_manager.chrome import ChromeDriverManager
from time import strftime
from gtts import gTTS
from youtube_search import YoutubeSearch
Ở trên, thư viện urlllib2
thực ra đã được thay thế bằng thư viện urllib.request
và urllib
ở phiên bản Python 3
. Mình vẫn đặt tên là urllib2
để tránh nhầm lẫn.
Với mỗi công dụng mà trợ lý ảo triển khai mình sẽ đại diện thay mặt bằng một hàm. Mỗi hàm hoàn toàn có thể trả về giá trị hoặc chỉ triển khai lệnh tùy theo công dụng của nó .
Việc tiên phong mình sẽ khai báo một vài biến để lưu đường dẫn hay những tham số để giải quyết và xử lý ngôn từ dưới dạng tiếng việt .
2. Khai báo biến mặc định
wikipedia.set_lang('vi')
language = 'vi'
path = ChromeDriverManager().install()
Hiện tại, những Lab điều tra và nghiên cứu về trí tuệ tự tạo ở Nước Ta đang góp vốn đầu tư tăng cường điều tra và nghiên cứu mảng giải quyết và xử lý ngôn từ tự nhiên ( Natural Language Processing ) ở dạng tiếng việt và đã đạt được những tác dụng đáng ghi nhận. Các quy mô nghiên cứu và điều tra được hoàn toàn có thể giải quyết và xử lý ngôn từ tiếng việt ở nhiều vùng miền, cả nam lẫn nữ, rất thực. Ở góc nhìn người sử dụng đại trà phổ thông thì khó hoàn toàn có thể biết đâu là do máy tính, đâu là do người thực thi. Các nghiên cứu và điều tra đều có tính ứng dụng cao, đang được những công ty công nghệ tiên tiến vận dụng tiến hành trong thực tiễn, nâng cao hiệu suất lao động một cách rõ ràng .
Các thư viện mình sử dụng ở trên đều rất đại trà phổ thông, tích hợp nhiều hàm giải quyết và xử lý. Tuy chất lượng giải quyết và xử lý tiếng việt chưa thực sự tuyệt vời nhưng ở góc nhìn bài viết thì mình thấy là khá ổn .
Mình lưu thêm biến path
để lưu đường dẫn cài đặt Chrome
để tránh việc cài đặt lại Chrome
khi chạy lại hàm.
3. Chức năng chuyển văn bản thành âm thanh
Google Cloud Text To Speech
def speak(text):
print("Bot: {}".format(text))
tts = gTTS(text=text, lang=language, slow=False)
tts.save("sound.mp3")
playsound.playsound("sound.mp3", False)
os.remove("sound.mp3")
Chức năng tiên phong mình cần là chuyển một đoạn văn bản thành âm thanh và đọc nó lên trên máy tính .
Mình sử dụng hàm gTTS
(google Text To Speech
) để chuyển văn bản thành âm thanh theo ngôn ngữ nhận dạng tiếng việt rồi lưu về máy tính dữ liệu âm thanh dưới file sound.mp3
.
Sau đó, minh dùng hàm playsound.playsound()
để đọc file sound.mp3
trên máy tính.
Sau khi đọc xong, mình phải xóa file sound.mp3
để tránh lỗi khi mình đọc một đoạn văn bản khác thì cũng được lưu lại dưới file sound.mp3
.
4. Chức năng chuyển âm thanh thành văn bản
Quy trình chung mạng lưới hệ thống nhận dạng giọng nói
Đây là tính năng cơ bản thứ hai cùng với tính năng chuyển văn bản thành âm thanh .
Trong tính năng này, mình sử dụng 2 hàm khác tương hỗ là get_audio ( ) và stop ( )
def get_audio():
r = sr.Recognizer()
with sr.Microphone() as source:
print("Tôi: ", end='')
audio = r.listen(source, phrase_time_limit=5)
try:
text = r.recognize_google(audio, language="vi-VN")
print(text)
return text
except:
print("...")
return 0
Ở hàm trên, mình sử dụng thư viện speech_recognition
(sr
) có chức năng là nhận dạng giọng nói để chuyển âm thanh thành văn bản. Âm thanh được đọc vào microphone
của máy tính sau đó được xử lý qua hàm listen
của sr.Recognition
rồi lưu dữ liệu âm thanh vào biến audio
. Dữ liệu âm thanh audio
thu được sẽ được nhận dạng ở ngôn ngữ tiếng việt trong hàm r.recognize_google
để chuyển thành dạng văn bản rồi lưu dữ liệu vào biến text
.
Nếu dữ liệu âm thanh audio
không lỗi tức là hàm r.recognize_google
có thể nhận dạng được audio
để chuyên thành text
thì hàm get_audio()
sẽ được trả về giá trị là text
còn nếu dữ liệu audio
bị lỗi mà hàm r.recognition_google
không nhận dạng được thì hàm get_audio()
sẽ được trả về giá trị là 0
(Mục đích là khi máy tính không hiểu mình nói gì thì mình sẽ thực hiện lại hàm get_audio()
để đọc lại)
def stop():
speak("Hẹn gặp lại bạn sau!")
Hàm stop()
đơn giản là đọc đoạn text "Hẹn gặp lại bạn sau"
sử dụng hàm speak()
ở trên.
def get_text():
for i in range(3):
text = get_audio()
if text:
return text.lower()
elif i < 2:
speak("Bot không nghe rõ. Bạn nói lại được không!")
time.sleep(2)
stop()
return 0
Hàm get_text() có chức năng là máy tính sẽ cố gắng nhận dạng âm thanh của người đọc tối đa 3 lần cho đến khi máy tính hiểu. Mình sử dụng hàm for lặp lại 3 lần, nếu đoạn text
có giá trị khác 0
thì hàm get_text
sẽ được trả về giá trị text.lower()
(Chuyển chữ cái in hoa thành in thường), còn nếu text
nhận giá trị là 0
(Tức là minh đọc mà máy tính không hiểu) mà chưa đọc đến lần thứ 3 thì mình sẽ yêu cầu người sử dụng đọc lại. Nếu sau 3 lần mà máy tính vẫn không hiểu thì mình nói gì hay không nghe thấy gì thì mình sẽ cho dừng lại sử dụng hàm stop
và hàm get_text
lúc này sẽ được trả về giá trị là 0
(Mục đích là khi máy tính không nghe thấy gì thì mình sẽ cho dừng chương trình luôn).
Mình thêm câu lệnh time.sleep ( 2 ) mục tiêu là chương trình tạm dừng 2 giây để tránh máy tính đọc những đoạn văn bản bị khớp nhau .
5. Chức năng giao tiếp, chào hỏi
def hello(name):
day_time = int(strftime('%H'))
if day_time < 12:
speak("Chào buổi sáng bạn {}. Chúc bạn một ngày tốt lành.".format(name))
elif 12 <= day_time < 18:
speak("Chào buổi chiều bạn {}. Bạn đã dự định gì cho chiều nay chưa.".format(name))
else:
speak("Chào buổi tối bạn {}. Bạn đã ăn tối chưa nhỉ.".format(name))
Nội dung chức năng này là để giao tiếp thông thường giữa người và máy tính. Đơn cử như: chào hỏi, hỏi thăm sức khỏe hay nói về thông tin trợ lý ảo,... Ở đây, mình sẽ mô phỏng bằng chức năng chào hỏi sử dụng hàm hello
.
Mình sử dụng biến day_time
để lưu giờ hiện tại trong ngày. Sau đó, biến sẽ được so sánh với các mốc giờ trong ngày để đưa ra lời chào.
Như trên thì trước 12 giờ thì mình sẽ chào buổi sáng, từ 12 giờ đến sau 18 giờ mình sẽ chào buổi chiều, từ 18 giờ trở đi mình sẽ chào buổi tối .
6. Chức năng hiển thị thời gian
def get_time(text):
now = datetime.datetime.now()
if "giờ" in text:
speak('Bây giờ là %d giờ %d phút' % (now.hour, now.minute))
elif "ngày" in text:
speak("Hôm nay là ngày %d tháng %d năm %d" %
(now.day, now.month, now.year))
else:
speak("Bot chưa hiểu ý của bạn. Bạn nói lại được không?")
Chức năng này khá là đơn giản. Mình sử dụng thư viện datetime
để lưu thông tin thời gian tại thời điểm hiện tại trong ngày rồi lưu vào biến now
.
Mình kiểm tra nếu trong đoạn text
mình hỏi có chữ "giờ"
, mình sẽ đọc thời gian hiện tại trong ngày còn nếu có chữ "ngày"
trong text
thì mình sẽ đọc thời điểm hiện tại trong năm.
Ví dụ :
text = "Bây giờ là mấy giờ"
Tức là có chữ "giờ"
trong text thì hàm get_time
thực hiện lệnh đọc:
Bây giờ là 10 giờ 26 phút
7. Chức năng mở ứng dụng hệ thống, website và chức năng tìm kiếm từ khóa trên Google
def open_application(text):
if "google" in text:
speak("Mở Google Chrome")
os.startfile('C:\Program Files (x86)\Google\Chrome\Application\chrome.exe')
elif "word" in text:
speak("Mở Microsoft Word")
os.startfile('C:\Program Files\Microsoft Office\\root\Office16\\WINWORD.EXE')
elif "excel" in text:
speak("Mở Microsoft Excel")
os.startfile('C:\Program Files\Microsoft Office\\root\Office16\EXCEL.EXE')
else:
speak("Ứng dụng chưa được cài đặt. Bạn hãy thử lại!")
Khi xuất hiện các từ khóa đặc biệt như google
hay word
hay excel
trong text
thì mình dùng hàm os.startfile()
để mở các file ứng dụng từ hệ thống.
Chỉ kiểm tra từ google
hay word
hay excel
trong text
là chưa đủ. Mình cần giới hạn ngữ nghĩa của text ở trong hàm assistant
để bot có thể hiểu là mở chương trình Google Chrome
, Word
, Excel
chứ không nhầm lẫn với các chức năng khác.
def open_website(text):
reg_ex = re.search('mở (.+)', text)
if reg_ex:
domain = reg_ex.group(1)
url = 'https://www.' + domain
webbrowser.open(url)
speak("Trang web bạn yêu cầu đã được mở.")
return True
else:
return False
Mình sử dụng hàm re.search()
(Hàm tìm kiếm trong biểu thức chính quy Regular Expression
) để tách phần domain
sau chữ "mở"
trong text
rồi ghép với phần tiền tố "https://www."
để tạo thành đường dẫn url
của web.
Sau đó, mình sử dụng webbroser.open(url)
để mở trang web mình yêu cầu.
Nếu domain
được hàm re.search()
tìm thấy thì mình sẽ thực hiện chức năng mở website và hàm open_website
được trả về giá trị là True
, còn nếu domain
không được tìm thấy thì mình sẽ không thực hiện chức năng gì cả và hàm open_website
trả về giá trị là False
.
def open_google_and_search(text):
search_for = text.split("kiếm", 1)[1]
speak('Okay!')
driver = webdriver.Chrome(path)
driver.get("http://www.google.com")
que = driver.find_element_by_xpath("//input[@name='q']")
que.send_keys(str(search_for))
que.send_keys(Keys.RETURN)
Cuối cùng là chức năng tìm kiếm từ khóa trên Google. Mình tiếp tục thực hiện tách từ khóa phía sau chữ "kiếm"
trong text
sử dụng hàm split()
rồi lưu vào biến search_for
.
Tiếp theo mình gọi hàm webdriver.Chrome(path)
để mở ứng dụng Google Chrome
rồi vào trang chủ "https://www.google.com"
.
Sau đó, mình sử dụng hàm driver.find_element_by_path()
để lấy thẻ query
(viết tắt là q
) rồi lưu vào biến que
Biến que
thực hiện tìm kiếm từ khóa search_for
và trả về kết quả trên Google Search
.
8. Chức năng gửi Email
SMTP là 3 chữ cái đầu viết tắt của Simple Mail Transfer Protocol dịch ra có nghĩa là giao thức truyền tải thư tín đơn giản hóa. Và giao thức này thực hiện nhiệm vụ chính là gửi mail còn việc nhận mail hay truy xuất dữ liệu mail server sẽ có giao thức IMAP hay POP3 đảm nhiệm.
SMTP Server (server dùng để gửi mail) là một dịch vụ cho phép gửi email với số lượng lớn, tốc độ nhanh mà không bị giới hạn như các hòm mail miễn phí của Gmail hoặc mail đi kèm hosting. Nói cách khác các máy chỉ chủ giúp bạn thao tác gửi thư người ta thường gọi là SMTP server chúng thực hiện gửi thư qua giao thức TCP hoặc IP.
def send_email(text):
speak('Bạn gửi email cho ai nhỉ')
recipient = get_text()
if 'yến' in recipient:
speak('Nội dung bạn muốn gửi là gì')
content = get_text()
mail = smtplib.SMTP('smtp.gmail.com', 587)
mail.ehlo()
mail.starttls()
mail.login('[email protected]', 'hung23081997')
mail.sendmail('[email protected]',
'[email protected]', content.encode('utf-8'))
mail.close()
speak('Email của bạn vùa được gửi. Bạn check lại email nhé hihi.')
else:
speak('Bot không hiểu bạn muốn gửi email cho ai. Bạn nói lại được không?')
Mình sử dụng thư viện smtplib
để thực hiện chức năng gửi Email bằng phương thức smtp
.
Mình lấy tên người gửi sử dụng bằng hàm get_text()
rồi lưu vào biến recipient
.
Ở hàm này, mình lấy ví dụ đơn giản là nếu tìm thấy chữ "yến"
trong tên người cần gửi (recipient
) thì mình sẽ thực hiện chức năng gửi Email
.
Tiếp tục, mình gọi hàm get_text()
để lấy nội dung cần gửi rồi lưu vào biến content
.
Tiếp theo, mình mở đường truyền gửi Email bằng smtp
rồi đăng nhập lại vào tài khoản gmail của mình. Sau khi kết nối thành công, mình gửi email từ địa chỉ "[email protected]"
đến địa chỉ "[email protected]"
với nội dung content
đã lấy ở trên. Cuối cùng, mình sẽ đóng đường truyền lại.
Khá là đơn thuần phải không ! ! !
9. Chức năng xem dự báo thời tiết
OpenWeatherMap là một dịch vụ trực tuyến cung cấp dữ liệu thời tiết. Nó thuộc sở hữu của OpenWeather Ltd, có trụ sở tại London, Vương quốc Anh. Nó cung cấp dữ liệu thời tiết hiện tại, dự báo và dữ liệu lịch sử cho hơn 2 triệu khách hàng, bao gồm các công ty Fortune 500 và hàng ngàn doanh nghiệp khác trên toàn cầu.
def current_weather():
speak("Bạn muốn xem thời tiết ở đâu ạ.")
ow_url = "http://api.openweathermap.org/data/2.5/weather?"
city = get_text()
if not city:
pass
api_key = "fe8d8c65cf345889139d8e545f57819a"
call_url = ow_url + "appid=" + api_key + "&q=" + city + "&units=metric"
response = requests.get(call_url)
data = response.json()
if data["cod"] != "404":
city_res = data["main"]
current_temperature = city_res["temp"]
current_pressure = city_res["pressure"]
current_humidity = city_res["humidity"]
suntime = data["sys"]
sunrise = datetime.datetime.fromtimestamp(suntime["sunrise"])
sunset = datetime.datetime.fromtimestamp(suntime["sunset"])
wthr = data["weather"]
weather_description = wthr[0]["description"]
now = datetime.datetime.now()
content = """
Hôm nay là ngày {day} tháng {month} năm {year}
Mặt trời mọc vào {hourrise} giờ {minrise} phút
Mặt trời lặn vào {hourset} giờ {minset} phút
Nhiệt độ trung bình là {temp} độ C
Áp suất không khí là {pressure} héc tơ Pascal
Độ ẩm là {humidity}%
Trời hôm nay quang mây. Dự báo mưa rải rác ở một số nơi.""".format(day = now.day,month = now.month, year= now.year, hourrise = sunrise.hour, minrise = sunrise.minute,
hourset = sunset.hour, minset = sunset.minute,
temp = current_temperature, pressure = current_pressure, humidity = current_humidity)
speak(content)
time.sleep(20)
else:
speak("Không tìm thấy địa chỉ của bạn")
Mình sử dụng nguồn dữ liệu thời tiết của hầu hết các thành phố trên toàn thể thời cung cấp tại trang web openweathermap.org
.
Đầu tiên, mình sẽ sử dụng biến ow_url
để lưu đường đẫn đến api
của trang web openweathermap.org
. Thông tin các thẻ để thực hiện request mình sẽ bổ sung sau.
Mình gọi hàm get_text()
để lấy thông tin thành phố cần truy vấn thời tiết rồi lưu vào biến city
.
Nếu máy tính không nghe được tên thành phố thì hàm sẽ pass
(Bỏ qua hàm)
Tiếp theo là thực hiện kết nối với api
trang web openweathermap.org
. Ở bước này, mình phải đăng kí tài khoản mới ở đây và lấy api_key
để có thể thực hiện thao tác truy vấn.
Biến call_url
sẽ lưu đường dẫn đầy đủ để truy vấn bao gồm thông tin tên thành phố city
và api_key
mình đã lấy ở trên.
Thư viện requests là một mô-đun Python mà bạn có thể sử dụng để gửi tất cả các loại yêu cầu HTTP. Mình gọi hàm requests.get(call_url)
để lấy thông tin truy vấn được từ trang web rồi lưu vào biến response
. response.json()
sẽ chuyển dữ liệu thuần về kiểu dữ liệu json
rồi lưu vào biến data
.
Nếu data["cod"]
không trả về 404
tức là requests không bị lỗi hay có nghĩa là thông tin tên thành phố city
chuẩn xác (truy vấn được) thì mình sẽ thực hiện chức năng xem thời tiết.
Bạn nên tìm hiểu về kiểu dữ liệu json
. Mình không đề cập ở đây. Từ dữ liệu kiểu json được lưu trong biến data
mình sẽ lấy được thông tin thời tiết bao gồm temperature
, pressure
, humidity
,..
Cuối cùng mình kết nối những thông tin trên với nhau rồi lưu vào biến content
và thực hiện đọc content
.
Tương tự như trên, câu lệnh time.sleep(20)
yêu cầu chương trình tạm dừng 20 giây để có thời gian đọc xong content
trên.
10. Chức năng phát nhạc trên Youtube
def play_song():
speak('Xin mời bạn chọn tên bài hát')
mysong = get_text()
while True:
result = YoutubeSearch(mysong, max_results=10).to_dict()
if result:
break
url = 'https://www.youtube.com' + result[0]['channel_link']
webbrowser.open(url)
speak("Bài hát bạn yêu cầu đã được mở.")
Mình gọi hàm get_text()
để lấy thông tin tên bài hát muốn phát rồi lưu vào biến mysong
.
Mình gọi vòng While là vì mình triển khai tìm kiếm sử dụng mạng Internet nên sẽ có lúc liên kết yếu không tìm thấy. Mình chạy While True khi nào tìm thấy thì thôi .
Biến url
lưu đường dẫn đến kết quả đầu tiên khi tìm kiếm trên Youtube
.
Mình sẽ dùng hàm webbrowser.open(url)
mở đường dẫn url đến video
vừa được tìm kiếm trên Google Chrome
để phát nhạc.
11. Chức năng thay đổi hình nền máy tính
Unsplash là một cộng đồng nhiếp ảnh – nơi mọi người chia sẻ miễn phí ảnh chụp chất lượng cao
def change_wallpaper():
api_key = 'RF3LyUUIyogjCpQwlf-zjzCf1JdvRwb--SLV6iCzOxw'
url = 'https://api.unsplash.com/photos/random?client_id=' + \
api_key # pic from unspalsh.com
f = urllib2.urlopen(url)
json_string = f.read()
f.close()
parsed_json = json.loads(json_string)
photo = parsed_json['urls']['full']
# Location where we download the image to.
urllib2.urlretrieve(photo, "C:/Users/Night Fury/Downloads/a.png")
image=os.path.join("C:/Users/Night Fury/Downloads/a.png")
ctypes.windll.user32.SystemParametersInfoW(20,0,image,3)
speak('Hình nền máy tính vừa được thay đổi')
Tương tự như khi lấy thông tin dự báo thời tiết. Mình sẽ lấy nguồn dữ liệu kho ảnh của trang web unsplash.com
.
Mình cần đăng ký để có api_key
do trang web cung cấp để có thể kết nối với api
của unsplash.com
.
Biến url
lưu đường dẫn đến api
của trang unsplash.com
.
Mình mở đường dẫn url
và lấy requests rồi lưu thông tin vào biến json_string
.
Bức ảnh sẽ được load và đọc từ json_string
rồi lưu vào biến photo
.
Dữ liệu hình ảnh photo
được lưu lại thành file ảnh trong máy tính.
Cuối cùng, mình dùng lệnh thay đổi hình nền của hệ thống qua hàm số ctypes.windll.user32.SystemParametersInfoW()
.
Chỉ cần như vậy, máy tính đã được thay hình nền mới .
12. Chức năng đọc báo ngày hôm nay
News API là một API REST HTTP đơn giản sử dụng để tìm kiếm và truy xuất các bài viết trực tiếp từ khắp nơi trên web
def read_news():
speak("Bạn muốn đọc báo về gì")
queue = get_text()
params = {
'apiKey': '30d02d187f7140faacf9ccd27a1441ad',
"q": queue,
}
api_result = requests.get('http://newsapi.org/v2/top-headlines?', params)
api_response = api_result.json()
print("Tin tức")
for number, result in enumerate(api_response['articles'], start=1):
print(f"""Tin {number}:\nTiêu đề: {result['title']}\nTrích dẫn: {result['description']}\nLink: {result['url']}
""")
if number <= 3:
webbrowser.open(result['url'])
Cách thực thi tương tự như như với công dụng dự báo thời tiết hay đổi khác hình nền máy tính .
Mình chọn trang web newsapi.org
là nguồn các bài báo được cập nhật nhanh nhất và cho mình thông tin requests tốt nhất.
Ở đây, mình cũng phải đăng kí tài khoản và lấy apiKey
trang web cung cấp để kết nối với nguồn dữ liệu của họ.
Mình sử dụng hàm get_text()
để lấy thông tin về chủ đề mình muốn đọc.
Sau đó, mình gọi hàm requests.get()
để khai thác thông tin từ đường dẫn url
mình nhập và lưu vào biến api_result
.
Kết quả được định dạng lại kiểu dữ liệu json
và lưu vào biến api_response
.
Cuối cùng, mình hiển thị tối đa 20 tin tức tích lũy được và mở 3 đường dẫn đến 3 bài báo tiên phong để tiện theo dõi .
13. Chức năng tìm định nghĩa trên từ điển wikipedia
Wikipedia là một bách khoa toàn thư mở với mục đích chính là cho phép mọi người đều có thể viết bài bằng nhiều loại ngôn ngữ trên Internet. Wikipedia đang là công trình tham khảo viết chung lớn nhất và phổ biến nhất trên Internet và hiện tại được xếp hạng trang web phổ biến thứ 5 trên toàn cầu. Wikipedia thuộc về tổ chức phi lợi nhuận Wikimedia Foundation.
def tell_me_about():
try:
speak("Bạn muốn nghe về gì ạ")
text = get_text()
contents = wikipedia.summary(text).split('\n')
speak(contents[0])
time.sleep(10)
for content in contents[1:]:
speak("Bạn muốn nghe thêm không")
ans = get_text()
if "có" not in ans:
break
speak(content)
time.sleep(10)
speak('Cảm ơn bạn đã lắng nghe!!!')
except:
speak("Bot không định nghĩa được thuật ngữ của bạn. Xin mời bạn nói lại")
Bot của mình có thể lấy thông tin chi tiết của hầu hết mọi thứ mình hỏi cô ấy. Như “Alex cho tôi biết về Google”
hoặc “Vui lòng cho tôi biết về Siêu máy tính”
hoặc “hãy cho tôi biết về Internet”
. Vì vậy, như bạn có thể thấy, mình có thể hỏi về hầu hết mọi thứ.
Hàm tìm kiếm của thư viện wikipedia
sẽ tìm kiếm chủ đề mình yêu cầu và trích xuất 500 ký tự đầu tiên (nếu bạn không chỉ định giới hạn, bot sẽ đọc toàn bộ trang cho bạn). Wikipedia
là một thư viện Python giúp dễ dàng truy cập và phân tích dữ liệu từ Wikipedia
.
Đầu tiên mình sử dụng hàm get_text()
để lấy thông tin về thứ mình muốn định nghĩa rồi lưu vào biến text
.
Sau đó, mình gọi hàm wikipedia.summary(text).split('\n')
để lưu lại thành một list
các đoạn nội dung mà wikipedia
tìm kiếm được.
Tiếp theo, mình đọc đoạn định nghĩa tiên phong .
Nếu có yêu cầu đọc thêm các nội dung sau thì mình phải yêu cầu là "có"
còn nếu không yêu cầu thì trợ lý ảo sẽ dừng đọc nội dung trong phần contents
.
14. Chức năng hiển thị các khả năng của trợ lý ảo
def help_me():
speak("""Bot có thể giúp bạn thực hiện các câu lệnh sau đây:
1. Chào hỏi
2. Hiển thị giờ
3. Mở website, application
4. Tìm kiếm trên Google
5. Gửi email
6. Dự báo thời tiết
7. Mở video nhạc
8. Thay đổi hình nền máy tính
9. Đọc báo hôm nay
10. Kể bạn biết về thế giới """)
Hàm đọc lại 10 tính năng mà trợ lý ảo hoàn toàn có thể triển khai được phòng khi người sử dụng chưa biết hiệu quả của trợ lý ảo .
15. Kết hợp tất cả chức năng Trợ lý ảo Tiếng Việt
def assistant():
speak("Xin chào, bạn tên là gì nhỉ?")
name = get_text()
if name:
speak("Chào bạn {}".format(name))
speak("Bạn cần Bot Alex có thể giúp gì ạ?")
while True:
text = get_text()
if not text:
break
elif "dừng" in text or "tạm biệt" in text or "chào robot" in text or "ngủ thôi" in text:
stop()
break
elif "có thể làm gì" in text:
help_me()
elif "chào trợ lý ảo" in text:
hello(name)
elif "hiện tại" in text:
get_time(text)
elif "mở" in text:
if 'mở google và tìm kiếm' in text:
open_google_and_search(text)
elif "." in text:
open_website(text)
else:
open_application(text)
elif "email" in text or "mail" in text or "gmail" in text:
send_email(text)
elif "thời tiết" in text:
current_weather()
elif "chơi nhạc" in text:
play_song()
elif "hình nền" in text:
change_wallpaper()
elif "đọc báo" in text:
read_news()
elif "định nghĩa" in text:
tell_me_about()
else:
speak("Bạn cần Bot giúp gì ạ?")
Chức năng cuối cùng là kết hợp các chức năng trên lại thành một con trợ lý ảo tiếng việt bằng phương pháp sử dụng các câu lệnh if... elif... else
.
Mình sử dụng vòng lặp While True
nhằm mục đích cho trợ lý ảo chạy vô hạn để trả lời liên tục các câu hỏi.
Mình gọi hàm get_text()
để lấy thông tin về yêu cầu của mình rồi lưu vào biến text
.
Nếu text
nhận giá trị là 0
tức là máy tính không nghe thấy gì thì vòng lặp sẽ gặp lệnh break
và dừng lại.
Còn nếu text
là một yêu cầu của người dùng thì mình chia nhỏ ra các trường hợp để thực hiện tất cả các chức năng mình vừa cài đặt ở trên.
Nếu trợ lý ảo nghe thấy "dừng lại"
hay "tạm biệt"
, ... thì chương trình cũng tự động dừng lại.
Ví dụ, trợ lý ảo của mình nghe được nhu yếu
text = "mở google và tìm kiếm một quả táo"
Thì hàm open_google_and_search(text)
sẽ được gọi với yêu cầu text
để thực hiện chức năng mình yêu cầu. Trong trường hợp này, trợ lý ảo sẽ thực hiện mở ứng dụng Google Chrome
rồi vào trang chủ www.google.com
và nhập từ khóa "một quả táo" sau đó sẽ trả về các kết quả mà google tìm kiếm được.
Các tính năng còn lại hoạt động giải trí một cách tương tự như .
Trên đây là hàng loạt nội dung mà mình thực thi để hoàn thành xong một trợ lý ảo tiếng việt .
Vậy là mình đã triển khai xong trợ lý ảo tiếng việt chỉ bằng những dòng code Python đơn thuần, hoàn toàn có thể nói tự mình tạo ra một trợ lý ảo máy tính để bàn hay máy tính rất mê hoặc. Ngoài những tính năng trên, bạn cũng hoàn toàn có thể tích hợp thêm nhiều tính năng khác nhau trong trợ lý giọng nói của mình .
Lưu ý : Khi khởi đầu thực thi chương trình của mình, hãy nói to và rõ ràng để trợ lý ảo tương tác với bạn tốt hơn, nhiều khi trợ lý của bạn không hiểu bạn lắm đâu .
Demo
Source code
Bạn hoàn toàn có thể tìm hiểu thêm Full code của mình ở đây .
Hướng đến tương lai
Trong suốt chiều dài lịch sử phát triển máy tính, giao diện người dùng (User Interface) đang dần trở nên tự nhiên dễ sử dụng hơn. Đầu tiên đó là sự kết hợp của màn hình và bàn phím. Sau đó là chuột và đồ họa giao diện người dùng. Màn hình cảm ứng là bước phát triển vĩ đại trong cuộc cách mạng cải tiến máy tính. Chúng ta dự đoán bước tiếp theo sẽ có thể bao gồm sự kết hợp giữa thực tế ảo, hành vi con người và ra lệnh bằng giọng nói. Rốt cuộc thì việc giao tiếp luôn luôn là dễ dàng và hiệu quả để truyền đạt nội dung hơn là nhập tay một câu lệnh hay biểu mẫu nào đấy.
Càng nhiều người tương tác với những thiết bị kích hoạt bằng giọng nói thì mạng lưới hệ thống càng có nhiều tài liệu về đặc thù ngôn từ của người dùng. Hệ thống sẽ xác lập được khuynh hướng và quy mô hóa thông tin nhận được. Sau đó, tài liệu này hoàn toàn có thể được sử dụng để xác lập sở trường thích nghi và thị hiều người dùng, đây là một trong những kế hoạch dài hạn để biến ngôi nhà trở nên mưu trí hơn. Google và Amazon đang tìm cách tích hợp trí tuệ tự tạo tương hỗ giọng nói có năng lực nghiên cứu và phân tích và phản hồi lại cảm hứng của con người .
Mình kỳ vọng những bạn đã thích đọc bài viết này. Hãy san sẻ tâm lý, nhận xét của bạn trong phần phản hồi .
Source: https://vh2.com.vn
Category : Tin Học